Paramutation in maize.

Plant Mol Biol

Department of Plant Sciences, University of Arizona, Tucson 85721, USA.

Published: June 2000

Paramutation is a heritable change in gene expression induced by allele interactions. This review summarizes key experiments on three maize loci, which undergo paramutation. Similarities and differences between the phenomenology at the three loci are described. In spite of many differences with respect to the stability of the reduced expression states at each locus or whether paramutation correlates with DNA methylation and repeated sequences within the loci, recent experiments are consistent with a common mechanism underlying paramutation at all three loci. Most strikingly, trans-acting mutants have been isolated that prevent paramutation at all three loci and lead to the activation of silenced Mutator transposable elements. Models consistent with the hypothesis that paramutation involves heritable changes in chromatin structure are presented. Several potential roles for paramutation are discussed. These include localizing recombination to low-copy sequences within the genome, establishing and maintaining chromatin domain boundaries, and providing a mechanism for plants to transmit an environmentally influenced expression state to progeny.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1006499808317DOI Listing

Publication Analysis

Top Keywords

three loci
12
paramutation
8
paramutation three
8
loci
5
paramutation maize
4
maize paramutation
4
paramutation heritable
4
heritable change
4
change gene
4
gene expression
4

Similar Publications

Background: The endangered Kashmir musk deer (Moschus cupreus), native to high-altitude Himalayas, is an ecological significant and endangered ungulate, threatened by habitat loss and poaching for musk pod distributed in western Himalayan ranges of India, Nepal and Afghanistan. Despite its critical conservation status and ecological importance in regulating vegetation dynamics, knowledge gaps persist regarding its population structure and genetic diversity, hindering effective management strategies.

Methods And Results: We aimed to understand the population genetics of Kashmir musk deer in north-western Himalayas using two mitochondrial DNA (mtDNA) regions and 11 microsatellite loci.

View Article and Find Full Text PDF

Interstitial lung disease (ILD) has shown limited treatment advancements, with minimal exploration of circulating protein biomarkers causally linked to ILD and its subtypes beyond idiopathic pulmonary fibrosis (IPF). In this study, we aimed to identify potential drug targets and circulating protein biomarkers for ILD and its subtypes. We utilized the most recent large-scale plasma protein quantitative trait loci (pQTL) data detected from the antibody-based method and ILD and its subtypes' GWAS data from the updated FinnGen database for Mendelian randomization analysis.

View Article and Find Full Text PDF

Island ecosystems, particularly vulnerable to environmental challenges, host many endangered native species. Diadromous fish, in particular, are threatened throughout their marine and freshwater habitats. The conservation of these species requires an in-depth understanding of their genetic diversity and structure, to better understand their adaptive potential.

View Article and Find Full Text PDF

Introduction: The exponential growth of genomic datasets necessitates advanced analytical tools to effectively identify genetic loci from large-scale high throughput sequencing data. This study presents Deep-Block, a multi-stage deep learning framework that incorporates biological knowledge into its AI architecture to identify genetic regions as significantly associated with Alzheimer's disease (AD). The framework employs a three-stage approach: (1) genome segmentation based on linkage disequilibrium (LD) patterns, (2) selection of relevant LD blocks using sparse attention mechanisms, and (3) application of TabNet and Random Forest algorithms to quantify single nucleotide polymorphism (SNP) feature importance, thereby identifying genetic factors contributing to AD risk.

View Article and Find Full Text PDF

Xylaria iriomotensis sp. nov. from termite nests and notes on X. angulosa.

Bot Stud

January 2025

Department of Chemical Engineering and Biotechnology, Tatung University, Taipei, 10491, Taiwan.

Background: Fungus gardens of the termite Odontotermes formosanus, excavated from Iriomote Island, Okinawa Prefecture, Japan, were subsequently incubated under laboratory conditions. A Xylaria species emerging from these fungus gardens was initially identified as X. angulosa, a species originally described from North Sulawesi, Indonesia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!