This laboratory has previously described a method of preventing air-space enlargement in experimental pulmonary emphysema using aerosolized hyaluronan (HA). Although it was found that HA preferentially binds to elastic fibers (which undergo breakdown by elastases in emphysema), it remains to be shown that such attachment actually prevents damage to the fibers. In the current study, cell-free radiolabeled extracellular matrices, derived from rat pleural mesothelial cells, were used to test the ability of low molecular weight ( approximately 100 kDa) streptococcal HA to prevent elastolysis. Coating the matrices with HA significantly decreased elastolysis (P<0.05) induced by porcine pancreatic elastase (43%), human neutrophil elastase (53%), and human macrophage metalloelastase (80%). Concomitant in vivo studies examined the ability of an aerosol preparation of the streptococcal HA to prevent experimental emphysema induced by intratracheal administration of porcine pancreatic elastase. As seen with earlier studies involving bovine tracheal HA, a single aerosol exposure significantly decreased elastase-induced airspace enlargement, as measured by the mean linear intercept (107.5 vs 89.6 microm; P < 0. 05). Furthermore, repeated exposure to the HA aerosol for 1 month did not reveal any morphological changes in the lung. The results provide further evidence that aerosolized HA may be an effective means of preventing pulmonary emphysema and perhaps other lung diseases that involve elastic fiber injury.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1525-1373.2000.22508.xDOI Listing

Publication Analysis

Top Keywords

hyaluronan elastic
4
elastic fiber
4
fiber injury
4
injury vitro
4
vitro elastase-induced
4
elastase-induced airspace
4
airspace enlargement
4
enlargement vivo
4
vivo laboratory
4
laboratory described
4

Similar Publications

Controlling Microparticle Aspect Ratio via Photolithography for Injectable Granular Hydrogel Formation and Cell Delivery.

ACS Biomater Sci Eng

January 2025

Weldon School of Biomedical Engineering, Purdue University, West Lafayette 47907-2050, Indiana, United States.

Granular hydrogels are injectable and inherently porous biomaterials assembled through the packing of microparticles. These particles typically have a symmetric and spherical shape. However, recent studies have shown that asymmetric particles with high aspect ratios, such as fibers and rods, can significantly improve the mechanics, structure, and cell-guidance ability of granular hydrogels.

View Article and Find Full Text PDF

Sigal peptides have garnered remarkable efficacy in rejuvenating photoaged skin and delaying senescence. Nevertheless, their low solubility and poor permeability bring about a formidable challenge in their transdermal delivery. To address this challenge, bioactive ionic liquids (ILs) synthesized from natural glycyrrhizic acid (GA) and oxymatrine (OMT) with eminent biocompatibility is first prepared.

View Article and Find Full Text PDF

Amniotic Fluid as a Potential Treatment for Vocal Fold Scar in a Rabbit Model.

J Voice

January 2025

Department of Otolaryngology - Head and Neck Surgery, University of Utah, Salt Lake City, UT; Department of Surgery, University Utah, Salt Lake City, UT.

Objectives/hypothesis: Vocal fold (VF) injury and chronic inflammation can progress to scarring, which is notoriously difficult to treat. Human amniotic fluid (AF) has potential for VF wound healing in a rabbit model, and we hypothesized that AF would demonstrate wound healing properties superior to hyaluronic acid (HA) over time.

Study Design: Randomized, controlled trial.

View Article and Find Full Text PDF

Normal human life expectancy has increased; hence, growing interest in the field of skin quality is observed. Peels are common medical devices that stimulate new skin growth and improve texture. Injectable hyaluronic acid (HA)-based products act by replacing fragmented collagen.

View Article and Find Full Text PDF

This study presents the development of thiol-maleimide/thiol-thiol double self-crosslinking hyaluronic acid-based (HA) hydrogels for use as dermal fillers. Hyaluronic acid with varying degrees of maleimide substitution (10%, 20%, and 30%) was synthesized and characterized, and HA hydrogels were fabricated using two molecular weights of four-arm polyethylene glycol (PEG10K/20K)-thiol as crosslinkers. The six resulting HA hydrogels demonstrated solid-like behavior with distinct physical and rheological properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!