S-Methylation by thiopurine methyltransferase (TPMT) is an important route of metabolism for the thiopurine drugs. About one in 300 individuals are homozygous for a TPMT mutation associated with very low enzyme activity and severe myelosuppression if treated with standard doses of drug. To validate the use of molecular genetic techniques for the detection of TPMT deficiency, we have determined red blood cell TPMT activity in 240 adult blood donors and 55 normal children. Genotype was determined by restriction fragment length analysis of polymerase chain reaction products in a cohort of 79 of the blood donors and five cases of azathioprine-induced myelosupression, and this confirmed a close relationship between genotype and phenotype. In 17 of the 24 cases in which mutations were found, DNA was also available from remission bone marrow. In one of these cases, DNA from the remission marrow sample indicated the presence of a non-mutated allele that had not been seen in the blast DNA sample obtained at presentation. These results indicate that polymerase chain reaction-based assays give reliable and robust results for the detection of TPMT deficiency, but that caution should be exercised in relying exclusively on DNA obtained from lymphoblasts in childhood leukaemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1365-2141.2000.02218.x | DOI Listing |
Metabolites
December 2024
Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA.
Background: Thiopurine methyltransferase (TPMT) plays a crucial role in the detoxification of thiopurine drugs, including the antimetabolites azathioprine and 6-mercaptopurine (6-MP) used to treat autoimmune diseases and various cancers. These drugs interfere with DNA synthesis by inhibiting the production of purine-containing nucleotides, leading to the death of rapidly dividing cells. TPMT inactivates thiopurine drugs by methylating at the thiol group.
View Article and Find Full Text PDFClin Pharmacol Ther
December 2024
Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
Nudix hydrolase 15 (NUDT15) deficiency is strongly associated with thiopurine-induced myelosuppression. Currently, testing for NUDT15 deficiency is based on the genotyping of the most frequent and clinically characterized no-function variants, that is, *2, *3 and *9. The Hispanic/Latino-predominant variant NUDT15 *4 (p.
View Article and Find Full Text PDFPharmacotherapy
January 2025
The University of Sydney School of Pharmacy, Camperdown, New South Wales, Australia.
Introduction: Thiopurine drugs are metabolized by thiopurine methyltransferase (TPMT) and low TPMT activity can result in severe adverse drug reactions. Therefore, TPMT testing is recommended for individuals receiving thiopurines to reduce the risk of toxicity.
Objectives: The objectives of this study were to assess the rate of TPMT testing among individuals receiving thiopurines and explore factors associated with undergoing TPMT testing in Australia.
Naunyn Schmiedebergs Arch Pharmacol
November 2024
Department of Pharmacy Practice, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri, Pune, Maharashtra, India.
Pharmacogenet Genomics
February 2025
Division of Neonatology, Department of Pediatrics, Fetal and Neonatal Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
Background: Pharmacogenomic testing identifies gene polymorphisms impacting drug metabolism, aiding in optimizing treatment efficacy and minimizing toxicity, thus potentially reducing healthcare utilization. 6-Mercaptopurine metabolism is affected by thiopurine methyltransferase ( TPMT ) and nudix hydrolase 15 ( NUDT15 ) polymorphisms. We sought to estimate the budget impact of preemptive pharmacogenomic testing for these genes in pediatric acute lymphoblastic leukemia (ALL) patients from an institutional perspective.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!