After a brief introduction on the variables which describe the physico-chemical properties of a fluid surface, this paper compares, in a very simple way, the equilibrium constant of homogeneous and heterogeneous reactions taking place in spherical micro-objects (uncharged and charged droplets and bubbles) and in media bordered by a flat interface. This quantity is by definition the exponential of the dimensionless standard chemical affinity whose values (< or = 0, > or = 0) may indicate the direction and the importance of the reaction (strictly true when the mixing term of the affinity is zero). The classical thermodynamic approach combined with the Laplace equation shows that: (i) high surface tension and high curvature influence the equilibrium constant, this effect being, however, much more important for bubbles than for droplets; (ii) charges on droplets reduce this effect; (iii) the constant of reaction taking place in the vapour in contact with a charged droplet depends significantly on the electric field pressure; (iv) reactions in droplets dispersed in the liquid phase are discussed and, in particular, capillarity seems to play a negligible role on reactions in micro-emulsions; (v) the surface amount of a gas bubble component transferred in the continuous liquid can be related to capillary quantities; (vi) expanding (or shrinking) bubble induced by a chemical reaction is analysed by using an extended Laplace law which includes the volumetric flow rate; (vii) the Laplace law is discussed in the frame of the choice of the dividing surface. Numerous actual examples from the atmosphere, sonochemistry and metallurgy illustrate the theory proposed. One of the interest, among other points, is that small objects (specially bubbles) give the potentiality to obtain, for steady or (near) equilibrium states, large amount of components which would not be possible when dealing with large reservoirs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0001-8686(00)00028-2 | DOI Listing |
Sci Rep
January 2025
Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, 226007, India.
Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.
View Article and Find Full Text PDFSci Rep
January 2025
School of Urban Geology and Engineering, Hebei GEO University, 050031, Shijiazhuang, China.
Both over-exploitation and exploitation reduction of groundwater can alter the conditions of groundwater recharge and discharge, thereby impacting the overall quality of groundwater. This study utilizes hydrogeochemical methods and statistical analysis to explore the spatial and temporal evolution characteristics and influencing factors of groundwater chemistry in the saline-freshwater funnel area of Hengshui City under exploitation reduction. The results showed that: With the exception of the deep freshwater funnel area in the western region, which exhibits a trend of water quality deterioration (Cl accounted for more than 25%), groundwater quality in the other funnel areas demonstrates an improving trend (HCO[Formula: see text] accounted for more than 25%).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre U. 9, 1092, Budapest, Hungary.
Microtiter-plate-based systems are unified platforms of high-throughput experimentation (HTE). These polymeric devices are used worldwide on a daily basis-mainly in the pharmaceutical industry-for parallel syntheses, reaction optimization, various preclinical studies and high-throughput screening methods. Accordingly, laboratory automation today aims to handle these commercially available multiwell plates, making developments focused on their modifications a priority area of modern applied research.
View Article and Find Full Text PDFNat Commun
January 2025
School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, PR China.
Developing efficient strategies for the deoxygenative functionalization of carbonyl compounds is crucial for enhancing the effective utilization of biomass and the upgrading of chemical feedstocks. In this study, we present an elegant cathodic reduction strategy that enables a tandem alkylation/dearomatization reaction between quinoline derivatives and aryl aldehydes/ketones in a one-pot process. Our approach can be executed via two distinct paths: the aluminum (Al)-facilitated spin-center shift (SCS) path and the Al-facilitated direct deoxygenation path.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2025
College of Physics, Qingdao University, Qingdao 266071, China. Electronic address:
Polyacrylonitrile (PAN)-based composite solid electrolytes (CSEs) hold great promise in the practical deployment of solid lithium batteries (SLBs) owing to their high voltage stability but suffer from poor stability against Li-metal. Herein, a poly(1,3-dioxolane) (PDOL)-graphitic CN (g-CN, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!