Partially carboxymethylated feather keratins. 1. Properties in aqueous systems.

J Agric Food Chem

Department of Chemical Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.

Published: September 2000

Feather keratins were extracted from chicken feathers with an aqueous solution of urea and 2-mercaptoethanol. The keratin solution obtained was dialyzed to remove the reagents. Upon dialysis, extensive protein aggregation occurred. To obtain stable solutions or dispersions in water, cysteine residues were modified prior to dialysis with iodoacetamide, iodoacetic acid, or bromosuccinic acid, thereby blocking free thiol groups and introducing hydrophilic groups. For the development of biodegradable materials with good mechanical properties from these biopolymers, disulfide bonds between the keratin molecules are needed. Therefore, cysteine residues were only partially modified by using different reagent/cysteine molar ratios. The reaction rate constants of iodoacetate with glutathione and 2-mercaptoethanol were successfully used to predict the degree of modification of keratin cysteine. It was shown that, for carboxymethylated keratin, fewer aggregates were formed for higher degrees of cysteine modification, while more protein was present as oligomers. Aggregates and oligomers were stabilized through intermolecular disulfide bonds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf9913155DOI Listing

Publication Analysis

Top Keywords

feather keratins
8
cysteine residues
8
disulfide bonds
8
partially carboxymethylated
4
carboxymethylated feather
4
keratins properties
4
properties aqueous
4
aqueous systems
4
systems feather
4
keratins extracted
4

Similar Publications

Chemical composition and techno-functional properties of high-purity water-soluble keratein and its enzymatic hydrolysates.

Food Chem

December 2024

Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Narutowicza Street 11/12, 80-233, Poland. Electronic address:

This study compared the effectiveness of urea-containing and urea-free L-cysteine solutions in extracting high-quality feather keratin and evaluated commercial proteases for producing keratin-derived bioactive peptides. The urea-assisted extraction was crucial for achieving high structural integrity and yield of soluble keratin. The keratin isolate exhibited oil-holding capacity of 9.

View Article and Find Full Text PDF

Transforming Feather Meal Into a High-Performance Feed for Broilers.

Vet Med Sci

January 2025

Department of Industrial Management, Faculty of Humanities, University of Tehran, Kish International Campus, Tehran, Iran.

Background: The poultry industry faces challenges with the high cost and environmental impact of Soybean meal. Feather meal, a byproduct with low digestibility due to its keratin content, is a potential alternative. Recent biotechnological advances, including enzymatic and bacterial hydrolysis, have enhanced its digestibility and nutritional value.

View Article and Find Full Text PDF

Identification of pennaceous barbule cell factor (PBCF), a novel gene with spatiotemporal expression in barbule cells during feather development.

Gene

March 2025

Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan; Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan. Electronic address:

Bird contour feathers exhibit a complex hierarchical structure composed of a rachis, barbs, and barbules, with barbules playing a crucial role in maintaining feather structure and function. Understanding the molecular mechanisms underlying barbule formation is essential for advancing our knowledge of avian biology and evolution. In this study, we identified a novel gene, pennaceous barbule cell factor (PBCF), using microarray analysis, RT-PCR, and in situ hybridization.

View Article and Find Full Text PDF

High-yield soluble production of recombinant β-keratin from Gallus gallus feathers using an experimental design approach.

J Biotechnol

February 2025

Universidade Federal do Rio de Janeiro, Instituto de Química, Departamento de Bioquímica, Rio de Janeiro, RJ, Brazil. Electronic address:

The search for new non-animal textile materials has increased yearly as environmental awareness and veganism continue to spread, driving the development of greener fabrics. Concurrently, β-keratin, a fibrous, resistant, and insoluble protein shows great potential for producing innovative biomaterials. However, β-keratin is naturally abundant in animal feathers.

View Article and Find Full Text PDF

Keratin nanoparticles derived from feather waste for novel antibacterial delivery.

Int J Biol Macromol

January 2025

Biomaterials Department, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan. Electronic address:

The global rise of bacterial resistance demands innovative strategies to enhance antibiotic efficacy. This study investigates keratin nanoparticles (KNPs) derived from waste chicken feathers as sustainable drug carriers. Antibacterial activity of KNPs was evaluated against Staphylococcus aureus and Escherichia coli using antibacterial sensitivity assays, including disc diffusion and minimum inhibitory concentration tests, while cytotoxicity was evaluated on human lymphoma cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!