We report the characterization of a rare chromosomal translocation, a t(2;11)(q31;p15), which occurred in a patient with de novo acute myeloid leukemia (AML-M4). By 3'-RACE and RT-PCR analyses, two kinds of NUP98-HOXD13 fusion transcript were detected. In addition, we identified a novel fusion transcript, NUP98-FN1, in the same patient. Ectopic expression of the wild-type HOXD13 gene was also observed in the patient, suggesting that HOXD13 contributes to the development of this type of leukemia. The NUP98-HOXD13 fusion transcript was predicted to encode a 552 or 569-amino acid protein containing the Phe-Gly (FG) repeat region of NUP98 and the homeodomain of HOXD13. The NUP98-FN1 fusion transcript was predicted to encode a 482 or 499-amino acid protein consisting of the same N-terminal region of NUP98 and a C-terminal region of 12 amino acids derived from a previously unidentified sequence. We isolated and characterized the chromosomal breakpoints. The breakpoint at 11p15 is mapped within a LINE repetitive element in a 9 kb intron of NUP98, and more than 60% of the sequenced 3 kb region surrounding the breakpoint junction consists of repetitive elements. The other breakpoint at 2q31 is in an intron of FN1, which is located 7 kb upstream of HOXD13, and the repetitive sequence content of the breakpoint junction is low. Local sequence duplications at genomic breakpoints suggest that the t(2;11) translocation is mediated through staggered double-strand DNA breaks. These results throw light on the mechanisms responsible for the generation of t(2;11) translocation and on the processes leading to t(2;11) leukemia.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.leu.2401881DOI Listing

Publication Analysis

Top Keywords

fusion transcript
16
hoxd13 gene
8
acute myeloid
8
myeloid leukemia
8
nup98-hoxd13 fusion
8
transcript predicted
8
predicted encode
8
acid protein
8
region nup98
8
breakpoint junction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!