During metamorphosis of the moth, Manduca sexta, the larval legs degenerate and are replaced by adult legs with a diverse array of new sensory organs. The majority of the larval sensory neurons degenerate but some hair sensilla and chordotonal organ sensory neurons survive metamorphosis (Consoulas [2000] J. Comp. Neurol. 419:154-174). In the present study nerve-tracing techniques, birth-date labeling (5-bromodeoxyuridine), and electrophysiology were used to describe the remodeling of the femoral chordotonal organ (FCO) in the prothoracic legs. The larval FCO is composed of two scoloparia, which are associated with separate apodemes. At the onset of metamorphosis, some of the 13 larval neurons degenerate, together with the larval FCO apodemes. The remaining larval FCO sensory neurons persist in the imaginal leg to become the precursors of the adult femoral and tibial chordotonal organs respectively. Early in the pupal stage, 45 to 60 new sensory neurons are generated de novo and become associated with 6 persistent larval neurons in the imaginal femur to compose the adult FCO. Two clusters of persistent and new neurons are enclosed into two scoloparia with short apodemes that eventually become fused. In both larval and adult stages, the FCO contains units that respond phasically and others that respond tonically to femorotibial movements. Nerve activity from the FCO neurons can be recorded continuously during the remodeling of the organ. A persistent leg flexor motoneuron receives inputs from the FCO sensory neurons in both larval and adult stages, offering the opportunity to investigate the remodeling of the neural circuits underlying the proprioceptive control of the femorotibial joint.
Download full-text PDF |
Source |
---|
Elife
January 2025
Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
The inferior colliculus (IC) has traditionally been regarded as an important relay in the auditory pathway, primarily involved in relaying auditory information from the brainstem to the thalamus. However, this study uncovers the multifaceted role of the IC in bridging auditory processing, sensory prediction, and reward prediction. Through extracellular recordings in monkeys engaged in a sound duration-based deviation detection task, we observed a 'climbing effect' in neuronal firing rates, indicative of an enhanced response over sound sequences linked to sensory prediction rather than reward anticipation.
View Article and Find Full Text PDFElife
January 2025
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.
The mushroom body (MB) is the center for associative learning in insects. In , intersectional split-GAL4 drivers and electron microscopy (EM) connectomes have laid the foundation for precise interrogation of the MB neural circuits. However, investigation of many cell types upstream and downstream of the MB has been hindered due to lack of specific driver lines.
View Article and Find Full Text PDFPain
January 2025
Department of Neuroscience, Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX.
Hyperalgesic priming is a model system that has been widely used to understand plasticity in painful stimulus-detecting sensory neurons, called nociceptors. A key feature of this model system is that following priming, stimuli that do not normally cause hyperalgesia now readily provoke this state. We hypothesized that hyperalgesic priming occurs because of reorganization of translation of mRNA in nociceptors.
View Article and Find Full Text PDFAging Cell
January 2025
Molecular Biology and Genetics Unit, Transcription and Disease Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India.
SYNGAP1 is a Ras GTPase-activating protein that plays a crucial role during brain development and in synaptic plasticity. Sporadic heterozygous mutations in SYNGAP1 affect social and emotional behaviour observed in intellectual disability (ID) and autism spectrum disorder (ASD). Although neurophysiological deficits have been extensively studied, the epigenetic landscape of SYNGAP1 mutation-mediated intellectual disability is unexplored.
View Article and Find Full Text PDFiScience
February 2025
Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
The vagus nerve is proposed to enable communication between the gut microbiome and the brain, but activity-based evidence is lacking. We find that mice reared germ-free exhibit decreased vagal tone relative to colonized controls, which is reversed via microbiota restoration. Perfusing antibiotics into the small intestines of conventional mice, but not germ-free mice, acutely decreases vagal activity which is restored upon re-perfusion with intestinal filtrates from conventional, but not germ-free, mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!