The self-consistent solution for the spin-charge solitonic superstructure in a quasi-one-dimensional electron system is obtained in the framework of the Hubbard model as a function of a hole doping. Effects of interchain interactions on the ground state are discussed. Results are used for the interpretation of the observed stripe phases in doped antiferromagnets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.84.6066 | DOI Listing |
Nano Lett
January 2025
Beijing Computational Science Research Center, Beijing 100193, China.
Artificial honeycomb lattices are essential for understanding exotic quantum phenomena arising from the interplay between Dirac physics and electron correlation. This work shows that the top two moiré valence bands in rhombohedral-stacked twisted MoS bilayers (tb-MoS) form a honeycomb lattice with massless Dirac fermions. The hopping and Coulomb interaction parameters are explicitly determined based on large-scale ab initio calculations.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics and Arnold Sommerfeld Center for Theoretical Physics (ASC), Ludwig-Maximilians-Universität München, München, Germany.
Nat Commun
January 2025
Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
Phospholipids are the most abundant component in lipid membranes and are essential for the structural and functional integrity of the cell. In eukaryotic cells, phospholipids are primarily synthesized de novo through the Kennedy pathway that involves multiple enzymatic processes. The terminal reaction is mediated by a group of cytidine-5'-diphosphate (CDP)-choline /CDP-ethanolamine-phosphotransferases (CPT/EPT) that use 1,2-diacylglycerol (DAG) and CDP-choline or CDP-ethanolamine to produce phosphatidylcholine (PC) or phosphatidylethanolamine (PE) that are the main phospholipids in eukaryotic cells.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Solid State Physics, TU Wien, 1040, Vienna, Austria.
Waterfalls are anomalies in the angle-resolved photoemission spectrum where the energy-momentum dispersion is almost vertical, and the spectrum strongly smeared out. These anomalies are observed at relatively high energies, among others, in superconducting cuprates and nickelates. The prevalent understanding is that they originate from the coupling to some boson, with spin fluctuations and phonons being the usual suspects.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Minjiang Collaborative Center for Theoretical Physics, College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou 350108, China.
Complex functional materials are characterized by intricate and competing bond orders, making them an excellent platform for evaluating the newly developed strongly constrained and appropriately normed (SCAN) density functional. In this study, we explore the effectiveness of SCAN in simulating the electronic properties of displacive ferroelectrics (BaTiO3 and PbTiO3) and magnetoelectric multiferroics (BiFeO3 and YMnO3), which encompass a broad spectrum of bonding characteristics. Due to a significant reduction in self-interaction error, SCAN manifests its improvements over the Perdew-Burke-Ernzerhof (PBE) method in three aspects: SCAN predicts more accurate ionicity, produces more compact orbitals, and better captures d-orbital anisotropy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!