A general survey is carried out on the theoretical grounds for methods of spin, luminescence and Mössbauer labels, as well as their application in the study of protein intramolecular dynamics. When combined, these methods allow the protein dynamics to be investigated within a wide range of correlation times (tau c = 10(2) - 10(-10) s) and amplitudes. The purposeful application of the methods to various proteins at different temperatures (30-330 K), water content, substrate addition, etc., revealed a number of dynamical processes and conformational transitions in proteins. The experiments indicated correlations between the local segmental mobility of protein globules in a nanosecond temporal scale and biochemical reactions, such as long-distance electron transfer, hydrolysis and photoreactions. The biophysical labelling methods results were analysed together with the data on dynamics obtained using complementary physico-chemical methods and theoretical calculations. Special emphasis is given to recent results on proteins from thermophylic micro-organisms. The mechanisms of protein intramolecular dynamics and their role in the stability and functions of proteins and enzymes are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1386-1425(00)00290-0 | DOI Listing |
Talanta
January 2025
Institute of Environmental Science and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China. Electronic address:
Lipid droplets (LDs) are essential organelles used to store lipids and participate in cellular lipid metabolism. Imaging LDs is an intuitive approach to comprehend their biological functions. Herein, the LDs-targeted CDs (LD-CDs) featuring robust solvatochromic emission were elaborately designed by a Schiff base reaction using 1, 2-diamino-4-fluorobenzene, 3-dimethylaminophenol, and thiourea as precursors.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Regensburg, Faculty of Chemistry and Pharmacy, Institute of Inorganic Chemistry, Universitätsstraße 31, D-93053, Regensburg, GERMANY.
Aminophosphates are the focus of research on prebiotic phosphorylation chemistry. Their bifunctional nature also makes them a powerful class of organocatalysts. However, the structural chemistry and dynamics of proton-binding in phosphorylation and organocatalytic mechanisms are still not fully understood.
View Article and Find Full Text PDFSoft Matter
January 2025
Computation-based Science and Technology Research Center, The Cyprus Institute, 2121 Nicosia, Cyprus.
This work presents an investigation of the influence of poly(-isopropylacrylamide) (PNIPAM) polymer on the structural dynamics of intrinsically disordered alpha-synuclein (α-syn) protein, exploring the formation and intricate features of the resulting α-syn/PNIPAM complexes. Using atomistic molecular dynamics (MD) simulations, our study analyzes the impact of initial configuration, polymer molecular weight, and protein mutations on the α-syn and the α-syn/PNIPAM complex. Atomistic simulations, of a few μs, of the protein/polymer complex reveal crucial insights into molecular interactions within the complex, emphasizing a delicate balance of forces governing its stability and structural evolution.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
Two-dimensional (2D) vibrational spectroscopy is a powerful means of investigating the structure and dynamics of complex molecules in condensed phases. However, even in theory, analysis of 2D spectra resulting from complex inter- and intra-molecular motions using only molecular dynamics methods is not easy. This is because molecular motions comprise complex multiple modes and peaks broaden and overlap owing to various relaxation processes and inhomogeneous broadening.
View Article and Find Full Text PDFNano Lett
January 2025
Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.
Covalent-organic frameworks (COFs) are dynamic covalent porous organic materials constructed from emissive molecular organic building blocks. However, most two-dimensional (2D) COFs are nonemissive or weakly emissive in the solid state owing to the intramolecular rotation and vibration together with strong π-π interactions. Herein, we report a pressure strategy to achieve the bright multicolor emission from yellow to red in the 2D triazine triphenyl imine COF (TTI-COF).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!