Strains of Pseudomonas aeruginosa hydrolyzing esculin were isolated for the first time. They amount to 17.1 +/- 2.0% (60 from 325) of the investigated P. aeruginosa strains isolated from the clinical material in St. Petersburg. Esculin hydrolysis was measured by micromethod in plates, results were analysed after 3-hours incubation at 37 degrees C. Esculin-positive strains possesed biovar properties: they are widely spread, demonstrated other characteristic features (absence of triethylamine odour, specific colonies lysis), are stable on ability to hydrolyse esculin while culture storage and after repeated culturing. Typical strain of esculinolytica biovar was deposited into the culture collection of the National Research Institute of Agricultural Microbiology as P. aeruginosa ARRIAM 64-A. Susceptibility testing of the esculin-positive strains by disk-diffusion method revealed that most strains were inhibited by imipenem (86.6%), amikacin (75.0%), ceftazidime (65.0%), meropenem (60.0%), aztreonam (51.6%). The percent of strains susceptible to other antibiotics was lower: azlocillin--33.3%, netilmycin--33.3%, piperacillin--26.6%, ceftriaxon--18.3%. Only small number of strains were inhibited by ciprofloxacin (8.3%), gentamycin (3.4%), cefoperazone (1.7%) and carbenicillin (1.7%). The results may be used for empiric therapy before the isolated strain susceptibility is tested but only according to positive esculin-hydrolysis express-test evaluated in 3-hours period.
Download full-text PDF |
Source |
---|
J Environ Manage
January 2025
iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Portugal; Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Spain; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Portugal. Electronic address:
The emergence of bacterial resistance and the increasing restrictions on the use of agrochemicals are boosting the search for novel, sustainable antibiotics. Antimicrobial peptides (AMPs) arise as a new generation of antibiotics due to their effectiveness at low doses and biocompatibility. We compared the antimicrobial activity of four promising AMPs (CA-M, BP100, RW-BP100, and 3.
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.
1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) is a unique thiamin diphosphate (ThDP)-dependent enzyme that catalyzes the formation of DXP, a branchpoint metabolite required for the biosynthesis of vitamins and isoprenoids in bacterial pathogens. DXPS has relaxed substrate specificity and utilizes a gated mechanism, equipping DXPS to sense and respond to diverse substrates. We speculate that pathogens utilize this distinct gated mechanism in different ways to support metabolic adaptation during infection.
View Article and Find Full Text PDFBiofilms are resistant microbial cell aggregates that pose risks to health and food industries and produce environmental contamination. Accurate and efficient detection and prevention of biofilms are challenging and demand interdisciplinary approaches. This multidisciplinary research reports the application of a deep learning-based artificial intelligence (AI) model for detecting biofilms produced by Pseudomonas aeruginosa with high accuracy.
View Article and Find Full Text PDFNursing home acquired pneumonia (NHAP), and its subset - aspiration-associated pneumonia, is a leading cause of morbidity and mortality among residents in long-term care facilities (LTCFs). Understanding colonization dynamics of respiratory pathogens in LTCF residents is essential for effective infection control. This study examines the longitudinal trends in prevalence, persistence, bacterial load, and co-colonization patterns of five respiratory pathogens in three LTCFs in Phoenix, Arizona.
View Article and Find Full Text PDFFront Immunol
January 2025
Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico.
Pathogenic bacteria trigger complex molecular interactions in hosts that are characterized mainly by an increase in reactive oxygen species (ROS) as well as an inflammation-associated response. To counteract oxidative damage, cells respond through protective mechanisms to promote resistance and avoid tissue damage and infection; among these cellular mechanisms the activation or inhibition of the nuclear factor E2-related factor 2 (Nrf2) is frequently observed. The transcription factor Nrf2 is considered the regulator of several hundred cytoprotective and antioxidant genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!