Electrogenic processes and protein conformational changes accompanying the bacteriorhodopsin photocycle.

Biochim Biophys Acta

Department of Photobiochemistry, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899, Moscow, Russia.

Published: August 2000

The possible mechanisms of electrogenic processes accompanying proton transport in bacteriorhodopsin are discussed on the basis of recent structural data of the protein. Apparent inconsistencies between experimental data and their interpretation are considered. Special emphasis is placed on the protein conformational changes accompanying the reprotonation of chromophore and proton uptake stage in the bacteriorhodopsin photocycle.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0005-2728(00)00140-7DOI Listing

Publication Analysis

Top Keywords

electrogenic processes
8
protein conformational
8
conformational changes
8
changes accompanying
8
bacteriorhodopsin photocycle
8
processes protein
4
accompanying bacteriorhodopsin
4
photocycle mechanisms
4
mechanisms electrogenic
4
processes accompanying
4

Similar Publications

Electroactive organisms contribute to metal cycling, pollutant removal, and other redox-driven environmental processes via extracellular electron transfer (EET). Unfortunately, developing genotype-phenotype relationships for electroactive organisms is challenging because EET is necessarily removed from the cell of origin. Microdroplet emulsions, which encapsulate individual cells in aqueous droplets, have been used to study a variety of extracellular phenotypes but have not been applied to investigate EET.

View Article and Find Full Text PDF

Disaccharide trehalose has been proven in many cases to be particularly effective in preserving the functional and structural integrity of biological macromolecules. In this work, we studied its effect on the electron transfer reactions that occur in the chromatophores of the photosynthetic bacterium . In the presence of a high concentration of trehalose, following the activation of the photochemistry by flashes of light, a slowdown of the electrogenic reactions related to the activity of the photosynthetic reaction center and cytochtome (cyt) complexes is observable.

View Article and Find Full Text PDF

New insights in uranium bioremediation by cytochromes of the bacterium Geotalea uraniireducens.

J Biol Chem

December 2024

Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal. Electronic address:

The bacterium Geotalea uraniireducens, commonly found in uranium-contaminated environments, plays a key role in bioremediation strategies by converting the soluble hexavalent form of uranium (U(VI)) into less soluble forms (e.g., U(IV)).

View Article and Find Full Text PDF

Located in plasma membranes, ATP hydrolases are involved in several dynamic transport processes, helping to control the movement of ions across cell membranes. ATP hydrolase acts as a transport protein, converting energy from ATP hydrolysis into transport molecules against their concentration gradients. In addition to energy metabolism and active transport, ATP hydrolase is essential for maintaining cellular homeostasis and cell function.

View Article and Find Full Text PDF

Objective: Direct cortical responses (DCR) and axono-cortical evoked potentials (ACEP) are generated by electrically stimulating the cortex either directly or indirectly through white matter pathways, potentially leading to different electrogenic processes. For ACEP, the slow conduction velocity of axons (median ≈ 4 m.s) is anticipated to induce a delay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!