Kinetic study of addition of volatile organic compounds to a nitrifying sludge.

Appl Biochem Biotechnol

Departamento de Biotecnología, DCBS, Universidad Autónoma Metropolitana, México, DF, Mexico.

Published: June 2000

The effects of different concentrations of several volatile organic compounds (VOC) such as ethanol, acetate, propionate, and butyrate ranging from 0 to 2000 mg/L as well as a mixture of volatile fatty acids (MVFA) at a 4:1:1 (acetate:propionate:butyrate) ratio on the nitrification rate in batch cultures were studied. The results showed that ethanol and acetate were consumed in a mixotrophic way by the nitrifying sludge. At a concentration of 500 mg/L, the nitrification rate of inhibition was different for each compound in which propionate and butyrate were the most inhibitory. At 2000 mg/L the inhibition was 80% with ethanol and 100% with acetate, propionate, and butyrate. With similar concentrations of MVFA, the inhibition was also similar to that in acetate. The effect of the addition of pulses of MVFA at a ratio of 4:1:1 during 14 h on the performance of the continuous nitrifying process with a hydraulic retention time of 3 d was also studied. No inhibition of the nitrification process was observed with pulses of 750-3000 mg of MVFA/L in the input of the reactor. The results in batch cultures suggest that the different degrees of inhibition of the nitrification process were related to the type of organic matter added. The noninhibitory effect of the organic matter in the continuous cultures on the nitrification efficiency of the nitrifying sludge might be related to the feeding pattern.

Download full-text PDF

Source
http://dx.doi.org/10.1385/abab:87:3:189DOI Listing

Publication Analysis

Top Keywords

nitrifying sludge
12
propionate butyrate
12
volatile organic
8
organic compounds
8
ethanol acetate
8
acetate propionate
8
2000 mg/l
8
nitrification rate
8
batch cultures
8
inhibition nitrification
8

Similar Publications

Relationship assessment of microbial community and cometabolic consumption of 2-chlorophenol.

Appl Microbiol Biotechnol

January 2025

Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Iztapalapa, CDMX, Mexico City, Mexico.

The relationship of microbial community and cometabolic consumption of 2-chlorophenol (2-CP) in a nitrifying sequencing batch reactor (SBR) was studied. The assessment of the population dynamics of the nitrifying sludge during the cometabolic 2-CP consumption with increasing ammonium (NH) concentrations in the SBR showed the presence of 39 different species of which 10 were always present in all cycles. Fifty-five percent of the species found were grouped as Proteobacteria (45% as β-proteobacteria and 10% as γ-proteobacteria class), 30% as Acidobacteria, and 15% as Deinococcus-Thermus phyla.

View Article and Find Full Text PDF

Aerobic granular sludge (AGS) is usually considered to be a biofilm system consisting of granules only, although practical experience suggests that flocs and granules of various sizes co-exist. This study thus focused on understanding the contribution of flocs and granules of various sizes to nitrification in a full-scale AGS-based wastewater treatment plant (WWTP) operated as a sequencing batch reactor (SBR). The size distribution in terms of total suspended solids (TSS) and the distribution of the nitrifying communities and activities were monitored over 14 months.

View Article and Find Full Text PDF

Removal of Ampicillin with Nitrifying Cultures in a SBR Reactor.

Appl Biochem Biotechnol

January 2025

Department of Biotechnology-CBS, Metropolitan Autonomous University Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, 09310, Mexico City, Mexico.

The presence of antibiotics in wastewater discharges significantly affects the environment, mainly due to the generation of bacterial populations with multiple antibiotic resistances. The cometabolic capacity of nitrifying sludge to simultaneously remove ammonium (NH) and emerging organic contaminants (EOCs), including antibiotics, has been reported. In the present study, the removal capacity of 50 mg ampicillin (AMP)/L by nitrifying cultures associated with biosorption and biotransformation processes was evaluated in a sequencing batch reactor (SBR) system.

View Article and Find Full Text PDF

Achieving stable partial nitrification by exploiting lag phase of NOB recovery for selective washout.

Environ Res

January 2025

Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100123, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.

Stable inhibition of nitrite-oxidizing bacteria (NOB) is a significant challenge in achieving partial nitrification (PN) and partial nitrification-anaerobic ammonia oxidation (PNA). Growing evidence suggested that NOB can develop resistance to suppression over time, leading to the re-enrichment of NOB within reactors. To address these issues, this study aimed to achieve stable PN by regulating SRT to selectively washout NOB during the lag phase of activity recovery following FA/FNA exposure.

View Article and Find Full Text PDF

Micro-polluted surface waters (MPSWs) draw increased concern for environmental protection. However, traditional treatment methods such as activated sludge, ozone activated carbon, and membrane filtration suffer from high cost and susceptibility to secondary pollution and are rarely used to address MPSWs. Herein, a new stepped combined constructed wetland planted with without additional inputs was developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!