Friedreich's ataxia is caused by mutations in the FRDA gene that encodes frataxin, a nuclear-encoded mitochondrial protein. Most patients are homozygous for the expansion of a GAA triplet repeat within the FRDA gene, but a few patients show compound heterozygosity for a point mutation and the GAA-repeat expansion. We analyzed DNA samples from a cohort of 241 patients with autosomal recessive or isolated spinocerebellar ataxia for the GAA triplet expansion. Patients heterozygous for the GAA expansion were screened for point mutations within the FRDA coding region. Molecular analyses included the single-strand conformation polymorphism analysis, direct sequencing, and linkage analysis with FRDA locus flanking markers. Seven compound heterozygous patients were identified. In four patients, a point mutation that predicts a truncated frataxin was detected. Three of them associated classic early-onset Friedreich's ataxia with an expanded GAA allele greater than 800 repeats. The other patient associated late-onset disease at the age of 29 years with a 350-GAA repeat expansion. In two patients manifesting the classical phenotype, no changes were observed by single-strand conformation polymorphism (SSCP) analysis. Linkage analysis in a family with two children affected by an ataxic syndrome, one of them showing heterozygosity for the GAA expansion, confirmed no linkage to the FRDA locus. Most point mutations in compound heterozygous Friedreich's ataxia patients are null mutations. In the present patients, clinical phenotype seems to be related to the GAA repeat number in the expanded allele. Complete molecular definition in these patients is required for clinical diagnosis and genetic counseling.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s004399900201DOI Listing

Publication Analysis

Top Keywords

friedreich's ataxia
16
compound heterozygous
12
patients
11
heterozygous patients
8
mutations frda
8
frda gene
8
gaa triplet
8
point mutation
8
expansion patients
8
gaa expansion
8

Similar Publications

Poincaré plot analysis of ECG uncovers beneficial effects of omaveloxolone in a mouse model of Friedreich's ataxia.

Heart Rhythm

January 2025

Department of Molecular Biosciences, University of California, Davis, CA, USA; Department of Basic Sciences, California Northstate University, Elk Grove, CA. Electronic address:

Background: Friedreich's ataxia (FA) is a rare inherited neuromuscular disorder, where most patients die from lethal cardiomyopathy and arrhythmias. Mechanisms leading to arrhythmic events in FA patients are poorly understood.

Objective: This study aims to examine cardiac electrical signal propagation in mouse model of FA with severe cardiomyopathy and evaluate effects of omaveloxolone (OMAV), the first FDA-approved therapy.

View Article and Find Full Text PDF

Introduction: Friedreich Ataxia (FA) is a multisystem neurodegenerative disease. Affected individuals rely on mobility assistive technologies (MAT) (e.g.

View Article and Find Full Text PDF

Safety and efficacy of omaveloxolone v/s placebo for the treatment of Friedreich's ataxia in patients aged more than 16 years: a systematic review.

Orphanet J Rare Dis

December 2024

Discovery Research Division, Indian Council of Medical Research (ICMR) Headquarters, V. Ramalingaswami Bhawan, Ansari Nagar, P.O. Box 4911, New Delhi, 110029, India.

Background: Friedreich's ataxia (FA) is a rare genetic disorder caused by silencing of the frataxin gene (FXN), which leads to multiorgan damage. Nrf2 is a regulator of FXN, which is a modulator of oxidative stress in animals and humans. Omaveloxolone (Omav) is an Nrf2 activator and has been reported to have antioxidative potential in various disease conditions.

View Article and Find Full Text PDF

Harsh acid oxidation of activated charcoal transforms an insoluble carbon-rich source into water-soluble, disc structures of graphene decorated with multiple oxygen-containing functionalities. We term these pleiotropic nano-enzymes as "pleozymes". A broad redox potential spans many crucial redox reactions including the oxidation of hydrogen sulfide (HS) to polysulfides and thiosulfate, dismutation of the superoxide radical (O*), and oxidation of NADH to NAD.

View Article and Find Full Text PDF

Background And Objectives: Friedreich's Ataxia (FRDA) is a genetic disease that affects a variety of different tissues. The disease is caused by a mutation in the gene ( which is important for the synthesis of iron-sulfur clusters. The primary pathologies of FRDA are loss of motor control and cardiomyopathy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!