The effects of peripheral endocrine hormone deficiencies on the processes of behavior, learning, and memory.

Neurosci Behav Physiol

S.V. Anichkov Department of Neuropharmacology, Science-Research Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg.

Published: January 2001

The effects of thyroid and adrenal cortex hormone and sex hormone deficiencies on the ability to learn, store memory traces, and behave were compared in male rats. These studies showed that removal of peripheral endocrine glands led to disruption of the learning process and the ability to reproduce learned information and also produced alterations in behavior. Analysis of the results showed that corticosteroid hormones are directly involved in the processes of learning and behavior. Sex and thyroid hormones appear to have modulatory effects on higher nervous activity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02463088DOI Listing

Publication Analysis

Top Keywords

peripheral endocrine
8
hormone deficiencies
8
effects peripheral
4
endocrine hormone
4
deficiencies processes
4
processes behavior
4
behavior learning
4
learning memory
4
memory effects
4
effects thyroid
4

Similar Publications

Background: Type 2 diabetes (T2D) has become a significant global health threat, yet its precise causes and mechanisms remain unclear. This study aims to identify gene expression patterns specific to T2D pancreatic islet cells and to explore the potential role of pancreatic stellate cells (PSCs) in T2D progression through regulatory networks involving lncRNA-mRNA interactions.

Methods: In this study, we screened for upregulated genes in T2D pancreatic islet samples using bulk sequencing (bulkseq) datasets and mapped these gene expression profiles onto three T2D single-cell RNA sequencing (scRNAseq) datasets.

View Article and Find Full Text PDF

Objectives: This case-control study aims to clarify the impact of single nucleotide polymorphisms (SNPs) within the P2X7 gene on susceptibility to type 2 diabetes mellitus (T2DM) and to evaluate their association with diabetic complications.

Methods: This study is comprised with 200 T2DM cases and 200 healthy controls. Seven candidate SNP loci were screened, and TaqMan-MGB real-time PCR technology was used to determine the polymorphic variants of P2X7.

View Article and Find Full Text PDF

Differential Impact of Medical Therapies for Acromegaly on Glucose Metabolism.

Int J Mol Sci

January 2025

Endocrinology Unit, Department of Internal Medicine and Medical Specialties, School of Medical and Pharmaceutical Sciences, University of Genova, 16132 Genova, Italy.

Acromegaly is a rare endocrine disorder caused by excessive growth hormone (GH) production, due, in the vast majority of cases, to the presence of a GH-secreting pituitary tumour. The chronic elevation of GH and the resulting high circulating levels of insulin-like growth factor-1 (IGF-1) cause the characteristic tissue overgrowth and a number of associated comorbidities, including several metabolic changes, such as glucose intolerance and overt diabetes mellitus (DM). Elevated GH concentrations directly attenuate insulin signalling and stimulate lipolysis, decreasing glucose uptake in peripheral tissues, thus leading to the development of impaired glucose tolerance and DM.

View Article and Find Full Text PDF

Context: Despite a growing number of studies, the genetic etiology in many cases of ovarian dysgenesis is incompletely understood.

Objectives: This work aimed to study the genetic etiology causing absence of spontaneous pubertal development, hypergonadotropic hypogonadism, and primary amenorrhea in 2 sisters.

Methods: Whole-exome sequencing was performed on DNA extracted from peripheral lymphocytes of 2 Palestinian sisters born to consanguineous parents.

View Article and Find Full Text PDF

Vascular diseases, such as hypertension, atherosclerosis, cerebrovascular, and peripheral arterial diseases, present major clinical and public health challenges, largely due to their common underlying process: vascular remodeling. This process involves structural alterations in blood vessels, driven by a variety of molecular mechanisms. The inhibitor of DNA-binding/differentiation-3 (), a crucial member of ID family of transcriptional regulators, has been identified as a key player in vascular biology, significantly impacting the progression of these diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!