The variation of magneto-optical rotatory dispersion with pH for carp deoxyhemoglobin in the presence and absence of inositol hexaphosphate was interpreted as a pH-induced allosteric transition between the structures of high and low ligand affinity (the R and T states in terms of the two state model of cooperativity). Increasing the pH from 6 to 11 causes a decrease in the fraction of molecules in the T state from 1 to 0.65. In the absence of inositol hexaphosphate the pH dependence of this fraction has a midpoint at 7.8, addition of inositol hexaphosphate shifts this midpoint by 1.5 units toward high pH. From the analysis of the data obtained and the pH dependences of functional properties (Tan, A.L., Noble, R.W. and Gibson, Q.H. (1973) J. Biol. Chem. 248, 2880-2888) the parameters of the two state model of cooperativity for carp hemoglobin were estimated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0005-2795(76)90022-2DOI Listing

Publication Analysis

Top Keywords

inositol hexaphosphate
12
allosteric transition
8
transition structures
8
structures high
8
high low
8
low ligand
8
ligand affinity
8
carp hemoglobin
8
absence inositol
8
state model
8

Similar Publications

Hydrogels are flexible materials characterized by a 3D network structure, which possess high water content and adjustable physicochemical properties. They have found widespread applications in tissue engineering, electronic skin, drug delivery, flexible sensors, and photothermal therapy. However, hydrogel networks often exhibit swelling behavior in aqueous environments, which can result in structural degradation and a loss of gel performance.

View Article and Find Full Text PDF

This study explores novel therapeutic avenues for diabetes, a global health concern marked by elevated blood glucose levels. We investigated the anti-diabetic potential of Gymnema Sylvestre's bioactive compounds, including Gymnemic acid I, Stigmasterol, Deacylgymnemic acid, Beta-Amyrin acetate, Longispinogenin, Gymnemic acid II, Gymnemic acid, Gymnemic acid X, Gymnemaside VI, Phytic acid and Gymnemic acid X. Employing network pharmacology, molecular docking and molecular dynamics (MD), we elucidated the potential mechanism of action.

View Article and Find Full Text PDF

The impact of atmospheric cold plasma (ACP) treatment (at 50 and 60 kV for 5 and 10 min) on nutritional (total phenolic and flavonoids contents, antioxidant capacity, and TBARs) and antinutritional (saponin and phytic acid) characteristics of quinoa grains has been investigated at this study. Results indicated that ACP treatment is significantly effective to reduce the antinutritional compounds compared with the control sample ( ≤ 0.05), among which S (i.

View Article and Find Full Text PDF

Phytic Acid Delays the Senescence of Fruit by Regulating Antioxidant Capacity and the Ascorbate-Glutathione Cycle.

Int J Mol Sci

December 2024

Engineering Research Center for Fruit Crops of Guizhou Province, Engineering Technology Research Centre for Rosa Roxburghii of National Forestry and Grassland Adminstratio, College of Agriculture, Guizhou University, Guiyang 550025, China.

fruit has a short postharvest shelf life, with rapid declines in quality and antioxidant capacity. This research assessed how phytic acid affects the antioxidant capacity and quality of fruit while in the postharvest storage period and reveals its potential mechanism of action. The findings suggested that phytic acid treatment inhibits the production of malondialdehyde (MDA) and enhances the activities and expressions of glutathione peroxidase (GPX), peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) while decreasing the generation of superoxide anions (O) and hydrogen peroxide (HO).

View Article and Find Full Text PDF

Encapsulation of hydrophobically ion-paired teduglutide in nanoemulsions: Effect of anionic counterions.

Food Chem

January 2025

Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea. Electronic address:

This study presents a novel method for encapsulating the bioactive peptide teduglutide to enhance its oral bioavailability using O/W nanoemulsion (NE). Recombinant teduglutide (rTGT), produced in E. coli with 93 % purity, was hydrophobically modified through ion-pairing with phytic acid (PA) and sodium dodecyl sulfate (SDS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!