Formation and repair of DNA double-strand breaks in gamma-irradiated K562 cells undergoing erythroid differentiation.

Mutat Res

Physics Laboratory, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.

Published: September 2000

Cellular differentiation is accompanied by gross changes in nuclear organization, metabolic pathways and gene expression characteristics. To investigate, whether the response to radiation damage is altered during cellular differentiation, we studied the formation and repair of DNA double-strand breaks in gamma-irradiated K562 erythroleukemia cells induced to differentiate by exposure to butyric acid. We applied an assay based on pulsed-field gel electrophoresis and Southern hybridization to measure break induction in several genomic restriction fragments. Pulsed-field gel electrophoresis of (14)C-labelled unrestricted DNA was used to study the rejoining of gamma-radiation-induced breaks in the whole genome. Total rejoining and joining of correct break ends in specific genomic regions was monitored by hybridization analysis of blots of unrestricted and restriction digested DNA with single-copy probes. The yields of gamma-ray-induced DNA double-strand breaks were found to decrease with differentiation by about 20%. Correct rejoining of radiation-induced breaks, as measured by the reconstitution of broken restriction fragments, was unaltered in differentiating cells compared to actively proliferating precursor cells. Total rejoining, however, appeared to be retarded in differentiating cells. The results suggest that in spite of the fundamental changes accompanying differentiation, the cellular damage response pathways are not essentially affected throughout erythroid differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0921-8777(00)00041-0DOI Listing

Publication Analysis

Top Keywords

dna double-strand
12
double-strand breaks
12
formation repair
8
repair dna
8
breaks gamma-irradiated
8
gamma-irradiated k562
8
erythroid differentiation
8
differentiation cellular
8
cellular differentiation
8
pulsed-field gel
8

Similar Publications

Exploring the Ascorbate Requirement of the 2-Oxoglutarate-Dependent Dioxygenases.

J Med Chem

January 2025

Ma̅tai Ha̅ora - Centre for Redox Biology and Medicine, Department of Biomedical Science and Pathology, University of Otago, Christchurch, Christchurch 8140, New Zealand.

In humans, the 2-oxoglutarate-dependent dioxygenases (2-OGDDs) catalyze hydroxylation reactions involved in cell metabolism, the biosynthesis of small molecules, DNA and RNA demethylation, the hypoxic response and the formation of collagen. The reaction is catalyzed by a highly oxidizing ferryl-oxo species produced when the active site non-heme iron engages molecular oxygen. Enzyme activity is specifically stimulated by l-ascorbic acid (ascorbate, vitamin C), an effect not well mimicked by other reducing agents.

View Article and Find Full Text PDF

The growing sophistication of tumor molecular profiling has helped to slowly transition oncologic care toward a more personalized approach in different tumor types, including in bladder cancer. The National Comprehensive Cancer Network recommends that all patients with stage IVA and stage IVB urothelial carcinoma have molecular analysis that integrates at least testing to help facilitate the selection of future therapeutic options. Sequencing of tumor-derived tissue is the mainstay to obtain this genomic testing, but as in other cancers, there has been extensive research into the integration of liquid biopsies in longitudinal management.

View Article and Find Full Text PDF

A major challenge in the field of synthetic motors relates to mimicking the precise, motion of biological motor proteins, which mediates processes such as cargo transport, cell locomotion, and cell division. To address this challenge, we developed a system to control the motion of DNA-based synthetic motors using light. DNA motors are composed of a central chassis particle modified with DNA "legs" that hybridize to RNA "fuel", and move upon enzymatic consumption of RNA.

View Article and Find Full Text PDF

We lack tools to edit DNA sequences at scales necessary to study 99% of the human genome that is noncoding. To address this gap, we applied CRISPR prime editing to insert recombination handles into repetitive sequences, up to 1697 per cell line, which enables generating large-scale deletions, inversions, translocations, and circular DNA. Recombinase induction produced more than 100 stochastic megabase-sized rearrangements in each cell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!