The human BMI-1 and EZH2 polycomb group (PcG) proteins are constituents of two distinct complexes of PcG proteins with gene regulatory activity. PcG proteins ensure correct embryonic development by suppressing homeobox genes, and they also contribute to regulation of lymphopoiesis. The two PcG complexes are thought to regulate different target genes and probably have different tissue distributions. Altered expression of PcG genes is linked to transformation in cell lines and induction of tumors in mutant mice, but the role of PcG genes in human cancers is relatively unexplored. Using antisera specific for human PcG proteins, we used immunohistochemistry and immunofluorescence to detect BMI-1 and EZH2 PcG proteins in Reed-Sternberg cells of Hodgkin's disease (HRS). The expression patterns were compared to those in follicular lymphocytes of the lymph node, the normal counterparts of HRS cells. In the germinal center, expression of BMI-1 is restricted to resting Mib-1/Ki-67(-) centrocytes, whereas EZH2 expression is associated with dividing Mib-1/Ki-67(+) centroblasts. By contrast, HRS cells coexpress BMI-1, EZH2, and Mib-1/Ki-67. Because HRS cells are thought to originate from germinal center lymphocytes, these observations suggests that Hodgkin's disease is associated with coexpression of BMI-1 and EZH2 in HRS cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1885707PMC
http://dx.doi.org/10.1016/S0002-9440(10)64583-XDOI Listing

Publication Analysis

Top Keywords

bmi-1 ezh2
20
pcg proteins
20
hrs cells
16
hodgkin's disease
12
coexpression bmi-1
8
ezh2 polycomb
8
polycomb group
8
reed-sternberg cells
8
cells hodgkin's
8
pcg
8

Similar Publications

Background/aim: Stem-like cancer cells are believed to be the leading cause of therapy resistance in malignant melanoma (MM). All-trans retinoic acid (ATRA) differentiation therapy is considered a promising approach to eradicate stem-like cancer cells, but some melanoma cells are resistant to ATRA. This study aimed to examine whether resveratrol (RS), a natural polyphenol compound, could improve the response of MM stem-like cells to ATRA and explore the possible underlying mechanisms.

View Article and Find Full Text PDF

Bmi-1 Epigenetically Orchestrates Osteogenic and Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells to Delay Bone Aging.

Adv Sci (Weinh)

December 2024

Department of Human Anatomy, Research Centre for Bone and Stem Cells, School of Basic Medical Sciences, Key Laboratory for Aging & Disease, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.

With the increase in the aging population, senile osteoporosis (SOP) has become a major global public health concern. Here, it is found that Prx1 and Bmi-1 co-localized in trabecular bone, bone marrow cavity, endosteum, and periosteum. Prx1-driven Bmi-1 knockout in bone-marrow mesenchymal stem cells (BMSCs) reduced bone mass and increased bone marrow adiposity by inhibiting osteoblastic bone formation, promoting osteoclastic bone resorption, downregulating the proliferation and osteogenic differentiation of BMSCs, and upregulating the adipogenic differentiation of BMSCs.

View Article and Find Full Text PDF

B-cell-specific Moloney murine leukemia virus integration site 1 knockdown impairs adriamycin resistance of gastric cancer cells.

Arab J Gastroenterol

August 2023

Department of General Surgery Ⅱ, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China.

Background And Study Aims: The B-cell-specific Moloney murine leukemia virus integration site 1 (BMI-1) is associated with the progression of gastric cancer (GC). However, its role in drug resistance of gastric cancer stem cell (GCSC) remains unclear. This study aimed to explore the biological function of BMI-1 in GC cells and its role in drug resistance of GCSCs.

View Article and Find Full Text PDF

Background: Overexpression of polycomb protein contributes to epigenetic repression in oral squamous cell carcinoma (OSCC) ensuing in poor prognosis and aggressive phenotype. Several plant-based compounds could help prevent epigenome alteration and cancer progression, but their low bioavailability limits their therapeutic activity.

Hypothesis: In this study, we have synthesized genistein nanoformulation (GLNPs) and evaluated its epigenetic regulation mechanism for selective apoptosis induction in OSCC.

View Article and Find Full Text PDF

Polycomb group proteins (PcG) are multi-subunit structure, consisting of polycomb repressive complex 1 (PRC1), PRC2/3, and pleiohomeotic repressive complex. PRC1 is made up of PHC, BMI-1, CBX, and Ring 1A/B. PRC2 protein complex included embryonic ectoderm development, PCL, SUZ12, SET domain, enhancer of zeste homolog-2 protein (EZH2), and Nurf55.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!