A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Novel mechanism for presynaptic inhibition: GABA(A) receptors affect the release machinery. | LitMetric

Novel mechanism for presynaptic inhibition: GABA(A) receptors affect the release machinery.

J Neurophysiol

The Otto Loewi Minerva Center for Cellular and Molecular Neurobiology, Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.

Published: September 2000

Presynaptic inhibition is produced by increasing Cl(-) conductance, resulting in an action potential of a smaller amplitude at the excitatory axon terminals. This, in turn, reduces Ca(2+) entry to produce a smaller release. For this mechanism to operate, the "inhibitory" effect of shunting should last during the arrival of the "excitatory" action potential to its terminals, and to achieve that, the inhibitory action potential should precede the excitatory action potential. Using the crayfish neuromuscular preparation which is innervated by one excitatory axon and one inhibitory axon, we found, at 12 degrees C, prominent presynaptic inhibition when the inhibitory action potential followed the excitatory action potential by 1, and even 2, ms. The presynaptic excitatory action potential and the excitatory nerve terminal current (ENTC) were not altered, and Ca(2+) imaging at single release boutons showed that this "late" presynaptic inhibition did not result from a reduction in Ca(2+) entry. Since 50 microM picrotoxin blocked this late component of presynaptic inhibition, we suggest that gamma-aminobutyric acid-A (GABA(A)) receptors reduce transmitter release also by a mechanism other than affecting Ca(2+) entry.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.2000.84.3.1240DOI Listing

Publication Analysis

Top Keywords

action potential
28
presynaptic inhibition
20
ca2+ entry
12
excitatory action
12
gabaa receptors
8
excitatory axon
8
release mechanism
8
inhibitory action
8
potential excitatory
8
action
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!