The cartwheel cell is the most numerous inhibitory interneuron of the dorsal cochlear nucleus (DCN). It is expected to be an important determinant of DCN function. To assess the contribution of the cartwheel cell, we examined the discharge characteristics of DCN neurons and behavioral measures in the Purkinje cell degeneration (pcd) mice, which lack cartwheel cells, and compared them to those of the control mice. Distortion product otoacoustic emissions and auditory brainstem-evoked response thresholds were similar between the two groups. Extracellularly recorded DCN single units in ketamine/xylazine-anesthetized mice were classified according to post-stimulus time histogram (PSTH) and excitatory-inhibitory response area (EI-area) schemes. PSTHs recorded in mouse DCN included chopper, pauser/buildup, onset, inhibited and nondescript types. EI-areas recorded included Types I, II, III, I/III, IV and V. There were no significant differences in the proportions of various unit types between the pcd and control mice. The pcd units had slightly lower thresholds to characteristic frequency tones; however, they had spontaneous rates, thresholds to noise, and maximum driven rates to noise that were similar to those of the control units. Pcd mice had smaller startle amplitudes, but startle latency, prepulse inhibition/augmentation and facilitation by a background tone were comparable between the two groups. From these results, we conclude that DCN function in response to relatively simple acoustic stimuli is minimally affected by the absence of the cartwheel cells. Future studies employing more complex and/or multimodal stimuli should help assess the role of the cartwheel cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0378-5955(00)00147-7DOI Listing

Publication Analysis

Top Keywords

control mice
12
cartwheel cells
12
purkinje cell
8
cell degeneration
8
single units
8
dorsal cochlear
8
cochlear nucleus
8
cartwheel cell
8
dcn function
8
pcd mice
8

Similar Publications

Endothelial cell (EC)-specific CTGF/CCN2 Expression Increases EC Reprogramming and Atherosclerosis.

Matrix Biol

January 2025

Department of Surgery, Emory University, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Research Services, Atlanta VA Medical Center, Decatur, GA, USA. Electronic address:

Arterial endothelial cells (ECs) reside in a complex biomechanical environment. ECs sense and respond to wall shear stress. Low and oscillatory wall shear stress is characteristic of disturbed flow and commonly found at arterial bifurcations and around atherosclerotic plaques.

View Article and Find Full Text PDF

Exposure to nano-polystyrene during pregnancy leads to Alzheimer's disease-related pathological changes in adult offspring.

Ecotoxicol Environ Saf

January 2025

Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China. Electronic address:

Nanoplastics are common environmental pollutants. As of now, research has yet to explore how exposure to nanomaterials during gestation might influence the risk of developing Alzheimer's disease (AD) in offspring. Throughout the research, we assessed the AD pathology in adult offspring of mice prenatal 80 nm polystyrene nanoparticles (PS-NPs) exposure.

View Article and Find Full Text PDF

Cardiotoxicity of polystyrene nanoplastics and associated mechanism of myocardial cell injury in mice.

Ecotoxicol Environ Saf

January 2025

Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1 Minde Road, Nanchang, Jiangxi Province 330006, China. Electronic address:

Aims: Nanoplastics (NPs) are emerging organic pollutants generated by plastic degradation and are ubiquitous in the environment. They can be accumulated through the food webs and enter the human body through dietary intake, posing health risks. The main target organs of NP accumulation are the lungs, liver, heart, and kidneys.

View Article and Find Full Text PDF

Histamine H receptor blockade alleviates neuropathic pain through the regulation of glial cells activation.

Biomed Pharmacother

January 2025

Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurochemistry, 12 Smetna Str., Krakow 31-343, Poland. Electronic address:

Neuropathic pain is a disorder affecting the somatosensory nervous system. However, this condition is also characterized by significant neuroinflammation, primarily involving CNS-resident non-neuronal cells. A promising target for developing new analgesics is histamine H receptor (HR); thus, we aimed to determine the influence of a novel HR antagonist/inverse agonist, E-98 (1-(7-(4-chlorophenoxy)heptyl)-3-methylpiperidine), on pain symptoms and glia activation in model of neuropathic pain in male mice (chronic constriction injury to the sciatic nerve).

View Article and Find Full Text PDF

Background: Cutaneous Mycobacterium marinum (M. marinum) infection can lead to the formation of infectious granulomas containing Langhans giant cells (LGCs). Due to concerns about prolonged antibiotic use and the development of drug resistance, its treatment poses challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!