Strong inhibition of estrone-3-sulfatase activity by pregnenolone 16alpha-carbonitrile but not by several analogs lacking a 16alpha-nitrile group.

Steroids

Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of South Carolina, 700 Sumter Street,Columbia, SC 29208, USA.

Published: September 2000

In recent years, development of potent inhibitors for estrogen sulfatases has become an actively pursued strategy for chemoprevention and/or chemotherapy of estrogen-dependent human breast cancers. We report here our findings that pregnenolone 16alpha-carbonitrile (PCN) is a potent inhibitor of estrone-3-sulfatase activity of rats and also humans. PCN inhibited in a concentration-dependent manner the desulfation of estrone-3-sulfate catalyzed by liver microsomal and nuclear fractions of female Sprague-Dawley rats. The inhibition of estrone-3-sulfatase activity in these two subcellular fractions showed a biphasic pattern, with a highly sensitive phase seen at 78 nM to 1.25 microm of PCN followed by a markedly less-sensitive phase at > 2.5 microm of PCN. Interestingly, several of PCN's structural analogs without a 16alpha-nitrile group showed little or no inhibitory effect on rat liver microsomal E(1)-3-sulfatase activity. Double-reciprocal analysis showed that the inhibition of rat liver microsomal E(1)-3-sulfatase activity by PCN was essentially competitive in nature. When microsomes from six human term placentas were tested for their E(1)-3-sulfatase activity, PCN showed a similar biphasic inhibition of placental E(1)-3-sulfatase. Likewise, several of its structural analogs showed little or no inhibitory effect on placental E(1)-3-sulfatase activity. Computational analysis of the D-ring structure of PCN and other structurally similar analogs used in the study suggests that the potent sulfatase-inhibiting activity of PCN may be partly due to its unique steric orientation and size of the 16alpha-nitrile group. This knowledge may be useful for the rational design of more potent steroidal inhibitors of E(1)-3-sulfatase by introducing an additional nitrile group to their C16alpha-position.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0039-128x(00)00129-xDOI Listing

Publication Analysis

Top Keywords

e1-3-sulfatase activity
16
estrone-3-sulfatase activity
12
16alpha-nitrile group
12
liver microsomal
12
activity pcn
12
inhibition estrone-3-sulfatase
8
activity
8
pregnenolone 16alpha-carbonitrile
8
pcn
8
microm pcn
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!