The synaptic vesicle protein synaptotagmin I has been proposed to serve as a Ca(2+) sensor for rapid exocytosis. Synaptotagmin spans the vesicle membrane once and possesses a large cytoplasmic domain that contains two C2 domains, C2A and C2B. Multiple Ca(2+) ions bind to the membrane proximal C2A domain. However, it is not known whether the C2B domain also functions as a Ca(2+)-sensing module. Here, we report that Ca(2+) drives conformational changes in the C2B domain of synaptotagmin and triggers the homo- and hetero-oligomerization of multiple isoforms of the protein. These effects of Ca(2)+ are mediated by a set of conserved acidic Ca(2)+ ligands within C2B; neutralization of these residues results in constitutive clustering activity. We addressed the function of oligomerization using a dominant negative approach. Two distinct reagents that block synaptotagmin clustering potently inhibited secretion from semi-intact PC12 cells. Together, these data indicate that the Ca(2)+-driven clustering of the C2B domain of synaptotagmin is an essential step in excitation-secretion coupling. We propose that clustering may regulate the opening or dilation of the exocytotic fusion pore.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2175261PMC
http://dx.doi.org/10.1083/jcb.150.5.1125DOI Listing

Publication Analysis

Top Keywords

c2b domain
16
domain synaptotagmin
12
ca2+-sensing module
8
c2b
6
synaptotagmin
6
ca2+
5
domain
5
synaptotagmin ca2+-sensing
4
module essential
4
essential exocytosis
4

Similar Publications

TC2N maintains stem cell-like characteristics to accelerate lung carcinogenesis by blockade of dual specificity protein phosphatase 3.

Cell Biosci

January 2025

Department of Pathology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, PR China.

Background: Tandem C2 domains, nuclear (TC2N) is a protein that has been characterized to contain C2A domain, C2B domain, and a short C-terminus with a WHXL motif. In previous studies, we have uncovered the oncogenic role and mechanisms of TC2N in lung cancer: TC2N achieves this by inhibiting the p53 signaling pathway and activating the NF-kappaB signaling pathway. Beyond that, its precise function in tumorigenesis is not fully understood.

View Article and Find Full Text PDF

Neurotransmitter release is triggered in microseconds by the two C domains of the Ca sensor synaptotagmin-1 and by SNARE complexes, which form four-helix bundles that bridge the vesicle and plasma membranes. The synaptotagmin-1 CB domain binds to the SNARE complex via a 'primary interface', but the mechanism that couples Ca-sensing to membrane fusion is unknown. Widespread models postulate that the synaptotagmin-1 Ca-binding loops accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers or helping bridge the membranes, but these models do not seem compatible with SNARE binding through the primary interface, which orients the Ca-binding loops away from the fusion site.

View Article and Find Full Text PDF

Neurotransmitter release is triggered in microseconds by Ca-binding to the Synaptotagmin-1 C-domains and by SNARE complexes that form four-helix bundles between synaptic vesicles and plasma membranes, but the coupling mechanism between Ca-sensing and membrane fusion is unknown. Release requires extension of SNARE helices into juxtamembrane linkers that precede transmembrane regions (linker zippering) and binding of the Synaptotagmin-1 CB domain to SNARE complexes through a "primary interface" comprising two regions (I and II). The Synaptotagmin-1 Ca-binding loops were believed to accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers, or helping bridge the membranes, but SNARE complex binding through the primary interface orients the Ca-binding loops away from the fusion site, hindering these putative activities.

View Article and Find Full Text PDF

The AD3 locus of synaptotagmin-1 C2 domains modulates domain stability.

Biophys J

November 2024

Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, Texas; Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas. Electronic address:

Synaptotagmin-1 (syt1) functions as the Ca-dependent sensor that triggers the rapid and synchronous release of neurotransmitters from neurotransmitter-containing vesicles during neuronal exocytosis. The syt1 protein has two homologous tandem C2 domains that interact with phospholipids in a Ca-dependent manner. Despite the crucial role of syt1 in exocytosis, the precise interactions between Ca, syt1, and phospholipids are not fully understood.

View Article and Find Full Text PDF
Article Synopsis
  • Pathogenic missense variants in the synaptic vesicle protein synaptotagmin-1 (SYT1) lead to a neurodevelopmental disorder with motor delays, intellectual disabilities, and visual impairments due to impaired neurotransmitter release.
  • Research on cultured neurons has shown that specific variants in the SYT1 protein hinder exocytosis, causing varying degrees of dysfunction based on the variant's location.
  • The study establishes a direct correlation between the exocytic efficiency of SYT1 variants and the severity of developmental impairments, indicating a clear relationship between genetic mutations, neurotransmitter release, and functional outcomes, paving the way for potential therapeutic approaches.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!