The discovery of multiple subtypes of human immunodeficiency virus type 1 (HIV-1) worldwide has created new challenges for the development of both therapeutic and preventive AIDS vaccines. We examined T-helper proliferative responses to HIV-1 clade A, B, C, G, and E whole-killed virus and to HIV-1 clade G and B core (p24) antigens in HIV-1-infected subjects taking potent antiviral drugs who received HIV immunogen (Remune) therapeutic vaccination. Subjects who were immunized mounted strong proliferative responses to both whole virus and core antigens of the different clades. These results suggest that a whole-killed immunogen may have broad applications as a therapeutic as well as a preventive vaccine in the current multiclade HIV-1 pandemic.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC95945 | PMC |
http://dx.doi.org/10.1128/CDLI.7.5.724-727.2000 | DOI Listing |
Immunohorizons
January 2025
Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
Antibody (Ab) crosslinking of HLA class II (HLA II) molecules on the surface of endothelial cells (ECs) triggers proliferative and prosurvival intracellular signaling, which are implicated in promoting chronic Ab-mediated rejection (cAMR). Despite the importance of cAMR in transplant medicine, the mechanisms involved remain incompletely understood. Here, we examined the regulation of yes-associated protein (YAP) nuclear cytoplasmic localization and phosphorylation in human ECs challenged with Abs that bind HLA II, which are strongly associated with cAMR.
View Article and Find Full Text PDFCancer Lett
January 2025
Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; National Clinical Research Center for Digestive Diseases (Shanghai), Shanghai 200433, China. Electronic address:
Esophageal squamous cell carcinoma (ESCC), a predominant subtype of esophageal cancer, typically presents with poor prognosis. Lactate is a crucial metabolite in cancer and significantly impacts tumor biology. Here, we aimed to construct a lactate-related prognostic signature (LPS) for predicting prognosis in ESCC and uncovering potential therapeutic targets.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, United States.
There are few in vitro models available to study microglial physiology in a homeostatic context. Recent approaches include the human induced pluripotent stem cell model, but these can be challenging for large-scale assays and may lead to batch variability. To advance our understanding of microglial biology while enabling scalability for high-throughput assays, we developed an inducible immortalized murine microglial cell line using a tetracycline expression system.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland.
Background/objectives: The current study explores the impact of CLL on γδ T cells and, in an attempt to better understand the sources of immunosuppression, assesses the impact of M-MDSCs on γδ T cells in vitro.
Methods: The study included 163 CLL patients and 34 healthy volunteers. γδ T cells were screened with flow cytometry, including NKG2D, Fas, FasL, and TRAIL staining.
Biomedicines
January 2025
School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar 751024, Odisha, India.
: Cancer is caused by disruptions in the homeostatic state of normal cells, which results in dysregulation of the cell cycle, and uncontrolled growth and proliferation in affected cells to form tumors. Successful development of tumorous cells proceeds through the activation of pathways promoting cell development and functionality, as well as the suppression of immune signaling pathways; thereby providing these cells with proliferative advantages, which subsequently metastasize into surrounding tissues. These effects are primarily caused by the upregulation of oncogenes, of which SPP1 (secreted phosphoprotein 1), a non-collagenous bone matrix protein, is one of the most well-known.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!