Cyclooxygenase-2 (COX2) is a primary inflammatory mediator that converts arachidonic acid into precursors of vasoactive prostaglandins, producing reactive oxygen species in the process. Under normal conditions COX2 is not detectable, except at low abundance in the brain. This study demonstrates a distinctive pattern of COX2 increases in the brain over time following traumatic brain injury (TBI). Quantitative lysate ribonuclease protection assays indicate acute and sustained increases in COX2 mRNA in two rat models of TBI. In the lateral fluid percussion model, COX2 mRNA is significantly elevated (>twofold, p < 0.05, Dunnett) at 1 day postinjury in the injured cortex and bilaterally in the hippocampus, compared to sham-injured controls. In the lateral cortical impact model (LCI), COX2 mRNA peaks around 6 h postinjury in the ipsilateral cerebral cortex (fivefold induction, p < 0.05, Dunnett) and in the ipsilateral and contralateral hippocampus (two- and six-fold induction, respectively, p < 0.05, Dunnett). Increases are sustained out to 3 days postinjury in the injured cortex in both models. Further analyses use the LCI model to evaluate COX2 induction. Immunoblot analyses confirm increased levels of COX2 protein in the cortex and hippocampus. Profound increases in COX2 protein are observed in the cortex at 1-3 days, that return to sham levels by 7 days postinjury (p < 0.05, Dunnett). The cellular pattern of COX2 induction following TBI has been characterized using immunohistochemistry. COX2-immunoreactivity (-ir) rises acutely (cell numbers and intensity) and remains elevated for several days following TBI. Increases in COX2-ir colocalize with neurons (MAP2-ir) and glia (GFAP-ir). Increases in COX2-ir are observed in cerebral cortex and hippocampus, ipsilateral and contralateral to injury as early as 2 h postinjury. Neurons in the ipsilateral parietal, perirhinal and piriform cortex become intensely COX2-ir from 2 h to at least 3 days postinjury. In agreement with the mRNA and immunoblot results, COX2-ir appears greatest in the contralateral hippocampus. Hippocampal COX2-ir progresses from the pyramidal cell layer of the CA1 and CA2 region at 2 h, to the CA3 pyramidal cells and dentate polymorphic and granule cell layers by 24 h postinjury. These increases are distinct from those observed following inflammatory challenge, and correspond to brain areas previously identified with the neurological and cognitive deficits associated with TBI. While COX2 induction following TBI may result in selective beneficial responses, chronic COX2 production may contribute to free radical mediated cellular damage, vascular dysfunction, and alterations in cellular metabolism. These may cause secondary injuries to the brain that promote neuropathology and worsen behavioral outcome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1456323PMC
http://dx.doi.org/10.1089/089771500415436DOI Listing

Publication Analysis

Top Keywords

005 dunnett
16
cox2
12
cox2 mrna
12
days postinjury
12
cox2 induction
12
traumatic brain
8
brain injury
8
pattern cox2
8
increases cox2
8
postinjury injured
8

Similar Publications

Effectiveness of mixed reality-based rehabilitation on hands and fingers by individual finger-movement tracking in patients with stroke.

J Neuroeng Rehabil

August 2024

Department of Rehabilitation Medicine, National Rehabilitation Center, Ministry of Health and Welfare, 58, Samgaksan-ro, Gangbuk-gu, Seoul, 01022, Republic of Korea.

Background: Mixed reality (MR) is helpful in hand training for patients with stroke, allowing them to fully submerge in a virtual space while interacting with real objects. The recognition of individual finger movements is required for MR rehabilitation. This study aimed to assess the effectiveness of updated MR-board 2, adding finger training for patients with stroke.

View Article and Find Full Text PDF

Beans elicit lower glycemic responses (GRs) than other starchy foods, but the minimum effective dose (MED) to reduce GR is unknown. We sought to determine the MED of beans compared to common starchy foods. Overnight-fasted healthy volunteers consumed ¼c (phase 1, = 24) or ½c (phase 2, = 18) of black, cranberry, great northern, kidney, navy and pinto beans and corn, rice, pasta and potato (controls), with blood glucose measured before and for 2 h after eating.

View Article and Find Full Text PDF

Introduction: Dental bleaching is the first choice to improve smile esthetics, but, in some cases, it needs to be associated with resin composite restoration to obtain a satisfactory result. Unfortunately, the bonding of resin-based materials can be impaired due to residual oxygen molecules, which can decrease the durability of the restoration.

Objectives: To evaluate the effect of the antioxidant application on the bond strength of bleached enamel after 24 hr and 3 years of water storage.

View Article and Find Full Text PDF

A unified analytical method applicable to common foodstuff matrices was developed and characterized for total and inorganic arsenic determination by hydride generation high-resolution continuum source quartz tube atomic absorption spectrometry, which was established based on different sample preparation procedures. This new method was found to be interference-free and cost-effective in terms of reagents consumption for sample preparation and derivatization to arsine for the inorganic arsenic fraction. Microwave-assisted digestion in HNO-HO for total arsenic and extraction in 0.

View Article and Find Full Text PDF

Solubility, pH, ion release, cytotoxicity, and osteoclastogenesis inhibition in bone marrow-derived monocyte macrophages (BMMs) were evaluated in EndoSequence BC Sealer (END), Bio-C Sealer (BC), and Sealer Plus BC (SPBC). pH was determined after immersion of the sealers in deionized water (DW) and Minimum Essential Medium Alpha (α-MEM). Solubility was obtained by mass loss.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!