The racemic prodrug BAY R3401 suppresses hepatic glycogenolysis. BAY W1807, the active metabolite of BAY R3401, inhibits muscle glycogen phosphorylase a and b. We investigated whether BAY R3401 reduces hepatic glycogenolysis by allosteric inhibition or by phosphatase-catalyzed inactivation of phosphorylase. In gel-filtered liver extracts, racemic BAY U6751 (containing active BAY W1807) was tested for inhibition of phosphorylase in the glycogenolytic (in which only phosphorylase a is active) and glycogen-synthetic (for the evaluation of a:b ratios) directions. Phosphorylase inactivation by endogenous phosphatase was also studied. In liver extracts, BAY U6751 (0.9-36 micromol/l) inhibited glycogen synthesis by phosphorylase b (notwithstanding the inclusion of AMP), but not by phosphorylase a. Inhibition of phosphorylase-a-catalyzed glycogenolysis was partially relieved by AMP (500 micromol/l). BAY U6751 facilitated phosphorylase-a dephosphorylation. Isolated hepatocytes and perfused livers were tested for BAY R3401-induced changes in phosphorylase-a:b ratios and glycogenolytic output. Though ineffective in extracts, BAY R3401 (0.25 micromol/l-0.5 mmol/l) promoted phosphorylase-a dephosphorylation in hepatocytes. In perfused livers exposed to dibutyryl cAMP (100 micromol/l) for maximal activation of phosphorylase, BAY R3401 (125 micromol/l) inactivated phosphorylase by 63% but glucose output dropped by 83%. Inhibition of glycogenolysis suppressed glucose-6-phosphate (G6P) levels. Activation of glycogen synthase after phosphorylase inactivation depended on the maintenance of G6P levels by supplementing glucose (50 mmol/l). We conclude that the metabolites of BAY R3401 suppress hepatic glycogenolysis by allosteric inhibition and by the dephosphorylation of phosphorylase a.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2337/diabetes.49.9.1419 | DOI Listing |
Molecules
June 2019
Key Laboratory of Traditional Chinese Medicine Research and Development of Hebei Province, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde 067000, China.
To explore the molecular mechanisms of BAY R3401, four types of novel photoaffinity probes bearing different secondary tags were synthesized. Their potency for glycogenolysis was evaluated in primary human liver HL-7702 cells and HepG2 cells. Probe 2d showed the best activity in primary human liver HL-7702 cells and HepG2 cells, with IC values of 4.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
April 2004
Department of Molecular Physiology and Biophysics, 702 Light Hall, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
The aim of these studies was to investigate the effect of hyperglycemia with or without hyperinsulinemia on hepatic gluconeogenic flux, with the hypothesis that inhibition would be greatest with combined hyperglycemia/hyperinsulinemia. A glycogen phosphorylase inhibitor (BAY R3401) was used to inhibit glycogen breakdown in the conscious overnight-fasted dog, and the effects of a twofold rise in plasma glucose level (HI group) accompanied by 1) euinsulinemia (HG group) or 2) a fourfold rise in plasma insulin were assessed over a 5-h experimental period. Hormone levels were controlled using somatostatin with portal insulin and glucagon infusion.
View Article and Find Full Text PDFNMR Biomed
February 2003
Biomedische NMR Eenheid, Afdeling Röntgendiagnose, Katholieke Universiteit Leuven, Leuven, Belgium.
We studied glycogen synthesis from glucose in perfused livers of fed (n = 4) and 24 h starved (n = 7) rats. Glycogenolysis was inhibited by BAY R3401 (150 microM) and proglycosyn (100 microM). After 60 min, we replaced 99% (13)C-1 glucose by natural abundance glucose.
View Article and Find Full Text PDFDiabetes
November 2002
Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
The direct acute effects of insulin on the regulation of hepatic gluconeogenic flux to glucose-6-phosphate (G6P) in vivo may be masked by the hormone's effects on net hepatic glycogenolytic flux and the resulting changes in glycolysis. To investigate this possibility, we used a glycogen phosphorylase inhibitor (BAY R3401) to inhibit glycogen breakdown in the overnight-fasted dog, and the effects of complete insulin deficiency or a fourfold rise in the plasma insulin level were assessed during a 5-h experimental period. Hormone levels were controlled using somatostatin with portal insulin and glucagon infusion.
View Article and Find Full Text PDFDiabetes
October 2002
Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
In the present study, we examined how the arterial insulin level alters the alpha-cell response to a fall in plasma glucose in the conscious overnight fasted dog. Each study consisted of an equilibration (-140 to -40 min), a control (-40 to 0 min), and a test period (0 to 180 min), during which BAY R 3401 (10 mg/kg), a glycogen phosphorylase inhibitor, was administered orally to decrease glucose output in each of four groups (n = 5). In group 1, saline was infused.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!