Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1540-8167.2000.tb00078.xDOI Listing

Publication Analysis

Top Keywords

reproducible conversion
4
conversion wide
4
wide narrow
4
narrow complex
4
complex tachycardia
4
tachycardia mechanism?
4
reproducible
1
wide
1
narrow
1
complex
1

Similar Publications

Oligomerized Electron Acceptors with Alkynyl Linkages to Suppress Electron-Photon Coupling for Low-Energy-Loss Organic Solar Cells.

Angew Chem Int Ed Engl

January 2025

Beijing University of Chemical Technology, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, 100190, Beijing, CHINA.

Oligomerized electron acceptors, featuring molecular weights akin to polymers and well-defined chemical structures, have emerged as promising candidates for organic solar cells (OSCs) due to their consistent batch-to-batch reproducibility and improved thermal stability. In this study, we developed a series of oligomerized electron acceptors incorporating alkynyl linkages via an efficient Sonogashira coupling reaction between alkyne-substituted Y-type precursors and multi-substituted iodobenzenes. This method produced monomeric (S-Alkyne-YF), dimeric (D-Alkyne-YF), and trimeric (T-Alkyne-YF) configurations, enabling systematic control over molecular size and substituent arms.

View Article and Find Full Text PDF

Templates for the acquisition of large datasets such as the Human Connectome Project guide the neuroimaging community to reproducible data acquisition and scientific rigor. By contrast, small animal neuroimaging often relies on laboratory-specific protocols, which limit cross-study comparisons. The establishment of broadly validated protocols may facilitate the acquisition of large datasets, which are essential for uncovering potentially small effects often seen in functional MRI (fMRI) studies.

View Article and Find Full Text PDF

Brain-Computer Interface and Electrochemical Sensor Based on Boron-Nitrogen Co-Doped Graphene-Diamond Microelectrode for EEG and Dopamine Detection.

ACS Sens

January 2025

Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China.

The simultaneous detection of electroencephalography (EEG) signals and neurotransmitter levels plays an important role as biomarkers for the assessment and monitoring of emotions and cognition. This paper describes the development of boron and nitrogen codoped graphene-diamond (BNGrD) microelectrodes with a diameter of only 200 μm for sensing EEG signals and dopamine (DA) levels, which have been developed for the first time. The optimized BNGrD microelectrode responded sensitively to both EEG and DA signals, with a signal-to-noise ratio of 9 dB for spontaneous EEG signals and a limit of detection as low as 124 nM for DA.

View Article and Find Full Text PDF

Cell-to-cell heterogeneity in lipid signaling underlies variations in response and recurrence for many cancers, including leukemias. A highly parallel, miniaturized thin-layer chromatographic platform capable of assaying single cells was developed. Ultrasmall volumes (50 pL) of standard fluorescent lipids were separated with excellent repeatability, reproducibility, and limits of detection.

View Article and Find Full Text PDF

Molecular diagnosis limitations, including complex treatment processes, low cost-effectiveness, and operator-dependent low reproducibility, interrupt the timely prevention of disease spread and the development of medical devices for home and outdoor uses. A newly fabricated gold nanopillar array-based film is presented for superior photothermal energy conversion. Magnifying the metal film surface-to-volume ratio increases the photothermal energy conversion efficiency, resulting in a swift reduction in the gene amplification reaction time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!