Basic fibroblast growth factor (bFGF), a ligand of receptor protein-tyrosine kinases, promoted the dissociation of G(s) and had antagonistic stimulatory and inhibitory effects on adenylyl cyclase and NADPH oxidase in human fat cell plasma membranes. The bFGF-induced activation of adenylyl cyclase was blocked by COOH-terminal anti-Galpha(s), indicating that it was mediated by Galpha(s). The inhibitory action of bFGF was mimicked by exogenously supplied Gbetagamma-subunits and was reversed by anti-Gbeta(1/2), or betaARK-CT, a COOH-terminal beta-adrenergic receptor kinase fragment that specifically binds free Gbetagamma, indicating that it was transduced by Gbetagamma complexes. The bFGF-induced inhibition of NADPH-dependent H(2)O(2) generation was also reversed by peptide 100-119, an inhibitor of G(s) activation by ligand-occupied beta-adrenergic receptors, indicating that the Gbetagamma complexes mediating the inhibitory action of the growth factor are derived from G(s). The findings suggest a direct, non-kinase-dependent, coupling of bFGF receptor(s) to G(s) and provide the first example of a ligand of receptor protein-tyrosine kinases that is capable of utilizing both types of component subunits of a single heterotrimeric G protein for dual signaling in a single cell type.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M002490200 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States.
Ever since the US Food and Drug Administration (FDA) approved the first vascular endothelial growth factor (VEGF) antagonist 2 decades ago, inhibitors of VEGF have revolutionized the treatment of a variety of ocular disorders involving pathologic neovascularization and retinal exudation. In this perspective, we evaluate the current status of anti-VEGF therapies and the real-world challenges encountered with maintaining therapeutic outcomes. Finally, we describe novel VEGF-based and combinatorial approaches that are in clinical development.
View Article and Find Full Text PDFHepatol Int
January 2025
National Clinical Research Center for Digestive Disease, State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
Background: Our previous research demonstrated that growth differentiation factor 15 (GDF15) exhibited superior predictive capability for metabolic dysfunction-associated steatohepatitis (MASH) development with an AUC of 0.86 at 10 years before disease diagnosis. However, the specific pathways and molecular mechanisms associated with GDF15 expression during MASH development remain to be fully investigated in humans.
View Article and Find Full Text PDFOdontology
January 2025
Department of Periodontology, Faculty of Dentistry, Gazi University, Ankara, Turkey.
We aimed to investigate the wound-healing, antioxidant, and anti-inflammatory effects of pterostilbene (PTS) on human gingival fibroblasts (GF). Different concentrations of PTS were applied to GFs and cell viability was evaluated by MTT assay. GFs were stimulated by lipopolysaccharide (LPS) and the study groups were determined as LPS, LPS + 1 μM PTS, LPS + 10 μM PTS, and control.
View Article and Find Full Text PDFSemin Immunopathol
January 2025
Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd, 20-1 Hirai, Hinode-Machi, Nishitama-Gun, Tokyo, 190-0182, Japan.
The intestinal epithelium is a rapidly self-renewing tissue; the rapid turnover prevents the invasion of pathogens and harmful components from the intestinal lumen, preventing inflammation and infectious diseases. Intestinal epithelial barrier function depends on the epithelial cell proliferation and junctions, as well as the state of the immune system in the lamina propria. Polyamines, particularly putrescine, spermidine, and spermine, are essential for many cell functions and play a crucial role in mammalian cellular homeostasis, such as that of cell growth, proliferation, differentiation, and maintenance, through multiple biological processes, including translation, transcription, and autophagy.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain.
Cyclic GMP-AMP synthase (cGAS) is a DNA sensing cellular receptor that induces IFN-I transcription in response to pathogen and host derived cytosolic DNA and can limit the replication of some RNA viruses. Some viruses have nonetheless evolved mechanisms to antagonize cGAS sensing. In this study, we evaluated the interaction between Bluetongue virus (BTV), the prototypical dsRNA virus of the Orbivirus genus and the Sedoreoviridae family, and cGAS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!