[The moist wound healing system in an experiment and clinical practice].

Rozhl Chir

Centrum popálenin a rekonstrukcní chirurgie, FN Brno.

Published: June 2000

We compared two types of moisture-retentive dressings (dressings that are capable of maintaining a moist environment) in wound healing. The conventional method of using an impregnated gauze in combination with a moist wound dressing was compared with TenderWet. First, we report results from an in vitro study and an animal experiment that included assessment of reepithelization and incidence of wound infection. Secondly, we discuss our experience using TenderWet in a clinical setting. Two cases of deep dermal burns are described and documented in detail. The results of our work suggest that a moist wound environment is more effective in facilitating wound healing than conventional methods.

Download full-text PDF

Source

Publication Analysis

Top Keywords

moist wound
12
wound healing
12
healing conventional
8
wound
6
[the moist
4
healing system
4
system experiment
4
experiment clinical
4
clinical practice]
4
practice] compared
4

Similar Publications

Emerging roles of hyaluronic acid hydrogels in cancer treatment and wound healing: A review.

Int J Biol Macromol

January 2025

Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, No. 89 Xiguan Road, Gaozhou 525299, Guangdong, China. Electronic address:

Hyaluronic acid (HA)-derived hydrogels signify a noticeable development in biomedical uses, especially in cancer treatment and wound repair. Cancer continues to be one of the foremost causes of death globally, with current therapies frequently impeded by lack of specificity, serious side effects, and the emergence of resistance. HA hydrogels, characterized by their distinctive three-dimensional structure, hydrophilic nature, and biocompatibility, create an advanced platform for precise drug delivery, improving therapeutic results while minimizing systemic toxicity.

View Article and Find Full Text PDF

Borate ester-crosslinked polysaccharide hydrogel reinforced by proanthocyanidins for oral ulcer therapy.

Colloids Surf B Biointerfaces

January 2025

Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun, China; Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China. Electronic address:

Oral ulcers are prone to recurrence and often complicated by bacterial infections. Currently, antibiotics, glucocorticoids, and anesthetics are commonly employed in clinical practice to alleviate symptoms. However, these medications exhibit limited retention in the moist and dynamic environment of the oral cavity, and their long-term use may lead to various side effects or drug resistance.

View Article and Find Full Text PDF

In Situ-Forming, Adhesive, and Antioxidant Chitosan Hydrogels for Accelerated Wound Healing.

Biomacromolecules

January 2025

State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.

Antioxidant hydrogels that can provide a moist environment and scavenge reactive oxygen species have emerged as highly potential wound dressing materials. In situ-forming and good tissue adhesiveness will make them more desirable, as they can fill the irregular wound defect, stick to the wound, and offer intimate contact with the wound. Herein, a hydrogel dressing combining in situ-forming, good tissue adhesiveness, and excellent antioxidant capabilities was developed by simply conjugating dopamine onto carboxymethyl chitosan.

View Article and Find Full Text PDF

Natural hydrogels have garnered increasing attention due to their natural origins and beneficial roles in wound healing. Hydrogel water-retaining capacity and excellent biocompatibility create an ideal moist environment for wound healing, thereby enhancing cell proliferation and tissue regeneration. For this reason, naturally derived hydrogels formulated from biomaterials such as chitosan, alginate, gelatin, and fibroin are highly promising due to their biodegradability and low immunogenic responses.

View Article and Find Full Text PDF

Injectable Chitosan Hydrogel Particles as Nasal Packing Materials After Endoscopic Sinus Surgery for Treatment of Chronic Sinusitis.

Gels

January 2025

Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan.

After endoscopic sinus surgery (ESS), nasal packing is often used to stop bleeding and promote wound healing. Because maintaining a moist environment is important to enhance wound healing, hydrogel-based wound dressings are effective to promote wound healing. Chitosan is used in the medical field because of its high hemostatic and wound healing properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!