To better understand the action of glucose on fatty acid metabolism in the beta-cell and the link between chronically elevated glucose or fatty acids and beta-cell decompensation in adipogenic diabetes, we investigated whether glucose regulates peroxisomal proliferator-activated receptor (PPAR) gene expression in the beta-cell. Islets or INS(832/13) beta-cells exposed to high glucose show a 60-80% reduction in PPARalpha mRNA expression. Oleate, either in the absence or presence of glucose, has no effect. The action of glucose is dose-dependent in the 6-20 mm range and maximal after 6 h. Glucose also causes quantitatively similar reductions in PPARalpha protein and DNA binding activity of this transcription factor. The effect of glucose is blocked by the glucokinase inhibitor mannoheptulose, is partially mimicked by 2-deoxyglucose, and is not blocked by the 3-O-methyl or the 6-deoxy analogues of the sugar that are not phosphorylated. Chronic elevated glucose reduces the expression levels of the PPAR target genes, uncoupling protein 2 and acyl-CoA oxidase, which are involved in fat oxidation and lipid detoxification. A 3-day exposure of INS-1 cells to elevated glucose results in a permanent rise in malonyl-CoA, the inhibition of fat oxidation, and the promotion of fatty acid esterification processes and causes elevated insulin secretion at low glucose. The results suggest that a reduction in PPARalpha gene expression together with a rise in malonyl-CoA plays a role in the coordinated adaptation of beta-cell glucose and lipid metabolism to hyperglycemia and may be implicated in the mechanism of beta-cell "glucolipotoxicity."

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M006001200DOI Listing

Publication Analysis

Top Keywords

glucose
13
elevated glucose
12
action glucose
8
glucose fatty
8
fatty acid
8
gene expression
8
reduction pparalpha
8
fat oxidation
8
rise malonyl-coa
8
expression
5

Similar Publications

Background: The precise pathways connecting insulin resistance (IR) to atherosclerotic cardiovascular disease (ASCVD) remain undefined. The present study aimed to examine the mediating role of arterial stiffness in the association between IR and ASCVD, providing epidemiology insights into the potential mechanisms driving IR to incident ASCVD.

Methods: A total of 59,777 participants from the Kailuan Study Arterial Stiffness Subcohort who were free of ASCVD at baseline were enrolled in the present study.

View Article and Find Full Text PDF

Enzymes are attractive as catalysts due to their specificity and biocompatibility; however, their use in industrial and biomedical applications is limited by stability. Here, we present a facile approach for enzyme immobilization within "all-enzyme" hydrogels by forming photochemical covalent cross-links between the enzyme glucose oxidase. We demonstrate that the mechanical properties of the enzyme hydrogel can be tuned with enzyme concentration and the data suggests that the dimeric nature of glucose oxidase results in unusual gel formation behavior which suggests a degree of forced induced dimer dissociation and unfolding.

View Article and Find Full Text PDF

Systems biology tackles the challenge of understanding the high complexity in the internal regulation of homeostasis in the human body through mathematical modelling. These models can aid in the discovery of disease mechanisms and potential drug targets. However, on one hand the development and validation of knowledge-based mechanistic models is time-consuming and does not scale well with increasing features in medical data.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the positive effects on anti-oxidation, anti-inflammation, and microbial composition optimization of diabetic mice using tussah (Antheraea pernyi) silk fibroin peptides (TSFP), providing the theoretical foundation for making the use of silk resources of A. pernyi and incorporating as a supplement into the hypoglycemic foods.

Method: The animal model of diabetes was established successfully.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!