Influence of heparin and hirudin on endothelial binding of antithrombin in experimental thrombinemia.

Crit Care Med

Klinik für Anästhesiologie und operative Intensivmedizin, Berlin, Germany.

Published: August 2000

Objective: During the last decade, experimental and clinical evidence has accumulated that antithrombin (AT) exerts anti-inflammatory effects when given in high doses. Meanwhile, AT substitution has been shown to significantly increase prostacyclin release. However, the link between endothelial AT binding and anti-inflammatory AT effects remains to be established in vivo, although heparin has been shown to counteract anti-inflammatory AT effects. We hypothesized that the administration of heparin in endotoxin-challenged rats would decrease endothelial AT binding and systemic prostacyclin concentrations.

Design: Prospective, randomized, controlled experimental in vivo study.

Setting: Research laboratory of a university hospital.

Animals: Fifty-six Wistar rats.

Interventions: Baseline values of coagulation variables were measured in six animals. Forty of 50 Wistar rats in the study groups were given endotoxin (50 mg x kg(-1) iv) and were treated with saline (group LPS), AT (15 units x kg(-1) x hr(-1)) (LPS+AT), AT and heparin (80 IU x kg(-1) x hr(-1)), or AT and hirudin (0.12 mg x kg(-1) x hr(-1)); the other 10 received saline instead of endotoxin and were treated with AT alone. Before endotoxin application, a tracheostomy was performed, and venous and arterial catheters were inserted for blood sampling and infusion.

Measurements: Intravital endothelial AT binding was studied by using fluorescence isothiocyanate-marked antibodies during intravital microscopy of intestinal submucosal venules. Systemic prostacyclin, thrombin-AT complex, and fibrinogen concentrations were measured after 4 hrs. Intergroup differences were tested by Kruskal-Wallis analysis of variance on ranks.

Main Results: AT and AT + heparin were equally effective in inhibiting systemic procoagulant turnover as reflected by fibrinogen concentrations. Only the administration of AT + hirudin significantly prevented fibrinogen consumption (p < .05). In contrast with all other treatments, the administration of heparin significantly reduced intravital endothelial AT binding (p < .05). However, prostacyclin concentrations were similarly increased in all endotoxin-challenged study groups irrespective of the anticoagulatory treatment.

Conclusions: There is evidence that heparin in contrast with hirudin prevents AT from being bound to the endothelial cell surface in this experimental model. Under low-dose AT substitution, systemic prostacyclin concentrations do not depend on whether heparin or hirudin is used for thrombin inhibition. These results support the view that heparin may counteract anti-inflammatory AT effects by keeping AT away from its endothelial binding sites; however, the results question the view that decreased endothelial prostacyclin release is solely responsible.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00003246-200008000-00032DOI Listing

Publication Analysis

Top Keywords

endothelial binding
24
anti-inflammatory effects
16
systemic prostacyclin
12
kg-1 hr-1
12
heparin hirudin
8
endothelial
8
prostacyclin release
8
heparin
8
heparin counteract
8
counteract anti-inflammatory
8

Similar Publications

Low fracture toughness, low-temperature degradation (LTD) susceptibility, and inadequate soft tissue integration greatly limit the application of zirconia ceramic abutment. Integrating the "surface" of hard all-ceramic materials into the gingival soft tissue and simultaneously promoting the "inner" LTD resistance and fracture toughness is challenging. Composite ceramics are effective in improving the comprehensive properties of materials.

View Article and Find Full Text PDF

Background: Cadaverine and hydrocinnamic acid are frequent metabolites in inflamed periodontal areas. Their role as a metabolite for plant growth inhibition has been established, but their relevance in humans has yet to be determined. Moreover, Vascular endothelial growth factor (VGEF) is a consistent growth factor in neo-angiogenesis in periodontal regeneration.

View Article and Find Full Text PDF

Background: Organs and tissues need to be vascularized during development. Similarly, vascularization is required to engineer thick tissues. How vessels are formed during organogenesis is not fully understood, and vascularization of engineered tissues remains a significant challenge.

View Article and Find Full Text PDF

Background: ACKR2 is an atypical chemokine receptor that plays a significant role in regulating inflammation by binding to inflammatory CC chemokines and facilitating their degradation. Previous findings suggest that the genetic absence of ACKR2 leads to heightened tumor growth in inflammation-driven models. Conversely, mice lacking ACKR2 exhibit protection against lung metastasis in melanoma and breast cancer models.

View Article and Find Full Text PDF

Transport and action of sesame protein-derived ACE inhibitory peptides ITAPHW and IRPNGL.

Food Chem

January 2025

State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.

Vascular endothelial dysfunction is an important pathogenic factor in hypertension, in which angiotensin-converting enzyme (ACE) plays an important role. Peptides that bind to ACE may attenuate vascular endothelial dysfunction by altering the structure of ACE. This study demonstrated that ITAPHW and IRPNGL were resistant to simulated gastrointestinal fluid and were transported across the Caco-2 monolayer via the intercellular space, with ITAPHW showing a high apparent permeability coefficient of (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!