A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MPP(+) injection into rat substantia nigra causes secondary glial activation but not cell death in the ipsilateral striatum. | LitMetric

Injection of MPP(+) into the substantia nigra causes extensive necrosis and anterograde degeneration of pars compacta dopaminergic neurons. We studied secondary effects in the ipsilateral striatum by examining dopaminergic terminals, signs of neuronal damage, and glial reactivity at 1, 2, 3, and 7 days after injection of MPP(+) into the substantia nigra. Dopaminergic terminals and uptake sites were evaluated with [(3)H]GBR-12935 binding and tyrosine hydroxylase immunoreactivity. Glial reaction was examined with markers of astrocytes and microglia. Stereology was used to evaluate any changes in neuronal density. Tyrosine hydroxylase immunoreactivity and [(3)H]GBR-12935 binding markedly decreased (74%) from days 2 to 7. Loss of dopaminergic terminals in the ipsilateral striatum was accompanied by an intense astroglial and, to a lesser extent, microglial reaction. However, no signs of cell damage, neuronal loss, or disruption of the blood-brain barrier were found in the striatum. Resident astroglial and microglial cells showed a morphological shift and notable changes in protein expression typical of glial reactivity, yet the presence of macrophage-like cells was not detected. This study shows that injection of MPP(+) in the substantia nigra causes a secondary reaction within the ipsilateral striatum involving the transformation of quiescent glia to reactive glia. It is suggested that stimuli derived from damaged dopaminergic terminals within the striatum are able to activate resident glia and that this glial transformation may promote repair and regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1006/nbdi.2000.0308DOI Listing

Publication Analysis

Top Keywords

substantia nigra
16
ipsilateral striatum
16
dopaminergic terminals
16
injection mpp+
12
mpp+ substantia
12
nigra secondary
8
glial reactivity
8
[3h]gbr-12935 binding
8
tyrosine hydroxylase
8
hydroxylase immunoreactivity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!