Effect of brefeldin A on acetylcholine release from glioma C6BU-1 cells.

Neuropharmacology

Laboratoire de Neurobiologie Cellulaire et Moléculaire C.N.R.S., 91198 Gif-sur-Yvette Cedex, France.

Published: August 2000

The glial C6BU-1 cell line, loaded with acetylcholine can release this neurotransmitter. This study was aimed at determining whether disruption of the Golgi-vesicular traffic by brefeldin A would change the acetylcholine release from these cells and affect proteins involved in transmitter release like the 15 kDa proteolipid, common to V-ATPase and mediatophore. Cells were treated for 24 or 36 h with brefeldin A (35.7 microM). The observed changes in cell morphology were typical for brefeldin A treated cells in which protein membrane supply has been stopped. Inhibition of membrane protein supply was confirmed in the present work. Moreover, the 15 kDa proteolipid also decayed to a very low level in the cell membrane fraction. The release of acetylcholine evoked by a calcium challenge and a calcium ionophore, or by electrical pulses decreased markedly. The life time of the release mechanism was of the order of 36 h and half decayed in 24 h. In addition, the electrically evoked release became much shorter. Considering that C6BU-1 cells are able to release large amounts of ACh and their membranes contain a sizeable amount of the 15 kDa proteolipid, these results suggest that this proteolipid may be one of the proteins forming the membrane complex responsible for transmitter release, at least in these cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0028-3908(00)00042-3DOI Listing

Publication Analysis

Top Keywords

acetylcholine release
12
kda proteolipid
12
release
9
c6bu-1 cells
8
release cells
8
transmitter release
8
cells
6
brefeldin
4
brefeldin acetylcholine
4
release glioma
4

Similar Publications

MuSK regulates neuromuscular junction Nav1.4 localization and excitability.

J Neurosci

January 2025

Carney Institute for Brain Science, Brown University, Providence, RI 02912

The neuromuscular junction (NMJ) is the linchpin of nerve-evoked muscle contraction. Broadly, the function of the NMJ is to transduce nerve action potentials into muscle fiber action potentials (MFAPs). Efficient neuromuscular transmission requires both cholinergic signaling, responsible for generation of endplate potentials (EPPs), and excitation, the amplification of the EPP by postsynaptic voltage-gated sodium channels (Nav1.

View Article and Find Full Text PDF

The / gene, linked to fine motor control in vertebrates, is a potential candidate gene thought to play a prominent role in human language production. It is expressed specifically in a subset of corticothalamic (CT) pyramidal cells (PCs) in layer 6 (L6) of the neocortex. These L6 FOXP2+ PCs project exclusively to the thalamus, with L6a PCs targeting first-order or both first- and higher-order thalamic nuclei, whereas L6b PCs connect only to higher-order nuclei.

View Article and Find Full Text PDF

BoNT/Action beyond neurons.

Toxicon

January 2025

National Research Council of Italy, Institute of Biochemistry and Cell Biology, 00015, Monterotondo, RM, Italy. Electronic address:

Botulinum neurotoxin type A (BoNT/A) has expanded its therapeutic uses beyond neuromuscular disorders to include treatments for various pain syndromes and neurological conditions. Originally recognized for blocking acetylcholine release at neuromuscular junctions, BoNT/A's effects extend to both peripheral and central nervous systems. Its ability to undergo retrograde transport allows BoNT/A to modulate synaptic transmission and reduce pain centrally, influencing neurotransmitter systems beyond muscle control.

View Article and Find Full Text PDF

The brainstem reticular formation pivots abnormal neural transmission in the course of Anorexia Nervosa.

J Neural Transm (Vienna)

January 2025

Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, Pisa, 56100, PI, Italy.

Anorexia nervosa (AN) represents an eating disorder, which features the highest rate of mortality among all psychiatric disorders. The disease prevalence is increasing steadily, and an effective cure is missing. The neurobiology of the disease is largely unknown, and only a few studies were designed to disclose specific brain areas, where altered neural transmission may occur.

View Article and Find Full Text PDF

Objective: The gut-brain axis (GBA) is involved in the modulation of multiple physiological activities, and the vagus nerve plays an important role in this process. However, the association between vagus nerve function and nutritional regulation remains unclear. Here, we explored changes in the nutritional status of mice after vagotomy and investigated the underlying mechanisms responsible for these changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!