The role of estrogens in breast and other cancers has been extensively investigated for many years, and historically most of these studies have focused on the hormonal regulation of cell proliferation. The most recent work in this area has focused on the expression of genes likely to mediate proliferation (e.g., growth factors, proto-oncogenes, etc.) and their regulation by the classic nuclear estrogen receptor, ER-alpha. In this chapter, we present a synopsis of several new developments in this area of ER-regulated gene expression. These developments include the following: 1) the selective activation of ER domains by partial estrogen antagonists, such as tamoxifen and other ligands; 2) the effects of ER-alpha overexpression and gene knockout on the development of breast and uterine cancers in experimental animal models; 3) mechanisms by which steroid hormones regulate programmed cell death, cell cycle progression, cell-substratum interactions, and genomic instability in cancer cells; 4) identification of nuclear proteins that interact with the ER in the presence of agonists and antagonists, the effect of ligand binding on the receptor structure, and the interactions of liganded and nonliganded receptors with coactivators, corepressors, and other regulatory proteins; and 5) the biochemical properties, cellular distribution, and potential biologic roles for the newly discovered ER-beta. Although there is an increasing interest in understanding the role of estrogens as endogenous carcinogens, it remains clear that ER-mediated regulation of gene expression plays many significant roles in normal and cancer cells, and increased knowledge of the mechanisms involved will improve our overall understanding of hormonal carcinogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/oxfordjournals.jncimonographs.a024237 | DOI Listing |
J Clin Invest
January 2025
Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, United States of America.
Although nucleoporin 98 (NUP98) fusion oncogenes often drive aggressive pediatric leukemia by altering chromatin structure and expression of HOX genes, underlying mechanisms remain elusive. Here, we report that a Hoxb-associated lncRNA HoxBlinc was aberrantly activated in NUP98-PHF23 fusion-driven leukemias. HoxBlinc chromatin occupancies led to elevated MLL1 recruitment and aberrant homeotic topologically associated domains (TADs) that enhanced chromatin accessibilities and activated homeotic/hematopoietic oncogenes.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
Metabolic reprogramming shapes tumor microenvironment (TME) and may lead to immunotherapy resistance in pancreatic ductal adenocarcinoma (PDAC). Elucidating the impact of pancreatic cancer cell metabolism in the TME is essential to therapeutic interventions. "Immune cold" PDAC is characterized by elevated lactate levels resulting from tumor cell metabolism, abundance of pro-tumor macrophages, and reduced cytotoxic T cell in the TME.
View Article and Find Full Text PDFJ Am Soc Nephrol
January 2025
Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.
Background: Arteriovenous (AV) fistulas are the preferred access for dialysis but have a high incidence of failure. This study aims to understand the crosstalk between skeletal muscle catabolism and AV fistula maturation failure.
Methods: Skeletal muscle metabolism and AV fistula maturation were evaluated in mice with chronic kidney disease (CKD).
Dalton Trans
January 2025
CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 No. 1465, La Plata (1900), Argentina.
In this work, we evaluated the anticancer activity of compounds 1 (mononuclear) and 2 (dinuclear) copper(II) coordination compounds derived from the ligand 5-methylsalicylaldehyde 2-furoyl hydrazone (H2L) over MDA-MB-231 Triple-negative breast cancer (TNBC) cells, and compared their activities with that of a newly synthesized, protonated, dinuclear analogue of 2 (complex 3). Here, we report the synthesis of compound 3 and it has been characterized in the solid state (X-ray diffraction, FTIR) and in solution (EPR, UV-Vis, ESI) as well as its electrochemical profile. Complexes 1-3 impaired cell viability from 0.
View Article and Find Full Text PDFGlycoconj J
January 2025
Department of Radiology, First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, China.
In this study, spatial and single-cell transcriptome techniques were used to investigate the role of beta-galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1) in promoting peritoneal metastasis in ovarian cancer epithelial cells. We collected single-cell transcriptomic (GSE130000) and spatial transcriptomic datasets (GSE211956) from the Gene Expression Omnibus and RNA-sequencing data from The Cancer Genome Atlas. The Robust Cell Type Decomposition (RCTD) approach was implemented to integrate spatial and single-cell transcriptomic data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!