Trafficking of inflammatory T cells into the central nervous system (CNS) plays an important role in the pathogenesis of multiple sclerosis. The directional migratory ability of peripheral T cells is associated with interactions of chemokines with their receptors expressed on T cells. In this study, transmigration of peripheral T cells toward a panel of chemokines was examined in patients with multiple sclerosis and healthy individuals using Boyden chemotactic transwells. A significantly increased migratory rate preferentially toward RANTES and MIP-1alpha, but not other chemokines, was found in T cells obtained from multiple sclerosis patients as opposed to healthy individuals (P: < 0.001). The migratory T-cell populations represented predominantly Th1/Th0 cells while non-migratory T cells were enriched for Th2-like cells. The study demonstrated further that aberrant migration of multiple sclerosis-derived T cells toward RANTES and MIP-1 alpha resulted from overexpression of their receptors (CCR5) and could be blocked by anti-CCR5 antibodies. These findings have important implications for our understanding of the mechanism underlying aberrant T cell trafficking in multiple sclerosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/brain/123.9.1874 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!