A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High ammonia tolerance in fishes of the family Batrachoididae (Toadfish and Midshipmen). | LitMetric

High ammonia tolerance in fishes of the family Batrachoididae (Toadfish and Midshipmen).

Aquat Toxicol

Division of Marine Biology and Fisheries, NIEHS Marine and Freshwater Biomedical Sciences Center, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, 33149, Miami, FL, USA

Published: September 2000

Three fish species of the family Batrachoididae, the gulf toadfish (Opsanus beta), the oyster toadfish (Opsanus tau), and the plainfin midshipman (Porichthys notatus) demonstrated exceptionally high tolerances to elevated water ammonia with 96-h LC50 values of 9.75, 19.72 and 6 mM total ammonia, respectively. Using pH values we calculated the corresponding unionized ammonia (NH(3)) values to be 519, 691 and 101 µM, respectively. These values are well above typical values for most teleost fishes, but close to those of ureotelic fish examined to date. Following sublethal high ammonia exposure (HAE) blood and tissue (brain, liver and muscle) sampling confirmed that internal ammonia levels rose substantially in all three species, suggesting that they were not simply avoiding toxicity by impermeance to ammonia. The three species of batrachoidids can be characterized in the following manner with respect to the inabilities to synthesize and excrete urea, based on these studies and prior research: O. beta (fully ureotelic)>O. tau (moderately ureotelic)>P. notatus (ammoniotelic). While some of the high ammonia tolerance for O. beta and O. tau can be explained by their ability to detoxify it to urea, other mechanisms must be at play for P. notatus. Further experiments determined that all three species possess rather high activities of glutamine synthetase (GSase) in brain especially (60-180 U g(-1)), that glutamine accumulates in many tissues, and that LC50 values are correlated positively with brain GSase activity. Taken together, our results suggest that alternative/additional mechanisms for ammonia detoxification via urea synthesis must be considered to explain the exceptionally high ammonia tolerance of this group.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0166-445x(99)00101-0DOI Listing

Publication Analysis

Top Keywords

high ammonia
16
ammonia tolerance
12
three species
12
ammonia
9
family batrachoididae
8
toadfish opsanus
8
exceptionally high
8
lc50 values
8
high
6
values
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!