N-Allyl enamines can undergo a [3,3] sigmatropic rearrangement known as a 3-aza-Cope (or amino-Claisen) reaction. We explored a 3-aza-Cope reaction involving 1,3 allylic migration from nitrogen to carbon in N-allyl enammonium quaternary salts, exemplified by benzo[a]quinolizine 8 and pyrrolo[2,1-a]isoquinoline 13, with an interest in stereochemistry and mechanism. Salts 8 and 13 were accessed, respectively, through stereospecific allylation of hydroxy amines 4 and 11a/11b to give 7 and 12a/12b, which were dehydrated with trifluoroacetic acid. Allylic migration in these tricyclic tetrahydroisoquinolines occurred with high stereospecificity, with the major products 9 (from 8) and 15a (from 13) apparently deriving from a concerted suprafacial [3,3] rearrangement. The rearrangement of 8 to 9 was facile at 23 degrees C (t(1/2) = ca. 5 h) and was >98% stereospecific, whereas the rearrangement of 13 to 15a/15b required heating between 50 and 100 degrees C, with ca. 90-95% stereospecificity (t(1/2) = ca. 0.3 h at 100 degrees C). A deuterium-labeling experiment with 21 ((2)H-13) confirmed that allylic inversion accompanies the 1,3 migration en route to major isomer 22a ((2)H-15a), supporting the predominance of a concerted [3, 3] sigmatropic mechanism. However, the 5-10% loss of stereospecificity in the rearrangements of the pyrroloisoquinolines 13 and 21, reflected by formation of minor isomers 15b and 22b, respectively, indicates a minor nonconcerted reaction pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo000363h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!