Prostaglandins formed by cyclooxygenase-1 (COX-1) or COX-2 produce hyperalgesia in sensory nerve endings. To assess the relative roles of the two enzymes in pain processing, we compared responses of COX-1- or COX-2-deficient homozygous and heterozygous mice with wild-type controls in the hot plate and stretching tests for analgesia. Preliminary observational studies determined that there were no differences in gross parameters of behavior between the different groups. Surprisingly, on the hot plate (55 degrees C), the COX-1-deficient heterozygous groups showed less nociception, because mean reaction time was longer than that for controls. All other groups showed similar reaction times. In the stretching test, there was less nociception in COX-1-null and COX-1-deficient heterozygotes and also, unexpectedly, in female COX-2-deficient heterozygotes, as shown by a decreased number of writhes. Measurements of mRNA levels by reverse transcription-PCR demonstrated a compensatory increase of COX-1 mRNA in spinal cords of COX-2-null mice but no increase in COX-2 mRNA in spinal cords of COX-1-null animals. Thus, compensation for the absence of COX-1 may not involve increased expression of COX-2, whereas up-regulation of COX-1 in the spinal cord may compensate for the absence of COX-2. The longer reaction times on the hot plate of COX-1-deficient heterozygotes are difficult to explain, because nonsteroid anti-inflammatory drugs have no analgesic action in this test. Reduction in the number of writhes of the COX-1-null and COX-1-deficient heterozygotes may be due to low levels of COX-1 at the site of stimulation with acetic acid. Thus, prostaglandins made by COX-1 mainly are involved in pain transmission in the stretching test in both male and female mice, whereas those made by COX-2 also may play a role in the stretching response in female mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC27868 | PMC |
http://dx.doi.org/10.1073/pnas.180319297 | DOI Listing |
Front Pharmacol
January 2025
Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China.
Background: TRIB3 has been reported to mediate breast cancer (BC) proliferation and metastasis by interacting with AKT1, and blocking the interaction between TRIB3 and AKT1 can inhibit the progression of BC. Besides, inhibiting TRIB3 to turn "cold tumor" hot has also been proved to be an effective therapeutic strategy for BC. Thus, this study aim to find drugs that can bind to TRIB3 to inhibit BC progression, and further elucidate its mechanism.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No.516 Jungong Road, Shanghai, 200093, China.
Background: Surface-enhanced Raman scattering (SERS) has attracted much attention as a powerful detection and analysis tool with high sensitivity and fast detection speed. The intensity of the SERS signal mainly depended on the highly enhanced electromagnetic field of nanostructure near the substrate. However, the fabrication of high-quality SERS nanostructured substrates is usually complicated, makes many methods unsuitable for large-scale production of SERS substrates.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8527, Japan.
Application of high-heat input welding on high-tensile strength steels causes deterioration of mechanical properties of the welded joint, due to softening and grain coarsening in the heat-affected zone (HAZ). In this study, low-heat input narrow-gap hot-wire laser welding was applied to 12 mm thick 780 MPa-class high-tensile strength steel plate. Conditions were optimized based on microstructural observations of joints produced at various welding speeds.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Physical and Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea.
Deterioration in muscle mass, strength, and physical performance due to conditions such as sarcopenia can affect daily activities and quality of life in the elderly. Exercise and mesenchymal stem cells (MSCs) are potential therapies for sarcopenia. This study evaluates the combined effects of exercise and adipose-derived MSCs (ADMSCs) in aged rats with sarcopenia.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
State Key Laboratory of High-Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co., Ltd., Nanjing 210008, China.
A novel class of SiO aerogel-based resin composite with a self-formed foamy structure and an extremely low thermal conductivity, as well as excellent fire resistance, was fabricated via a room temperature and atmospheric pressure route. The self-formed foamy structure was achieved by utilizing SiO aerogel particles not only as a thermal insulative functional additive filler but also as nano-sized solid particles in a Picking emulsion system, adjusting the surface tension as a stabilizer at the interface between the two immiscible phases (liquid and air in this case). The results of foamy structure analyses via scanning electron microscopy, micro-CT, and N adsorption-desorption isotherms validate the successful generation of a micro-scale porous structure with the enhancement of the aerogel nano-scale solid particles at the wall as a stabilizer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!