Background: Number of patients treated by general practitioners with various immunomodulatory drugs has recently increased. Effects of such medication on the immune system were not usually monitored. The aim of our work was to evaluate effect of selected immunomodulatory drugs on the phagocytic and metabolic activities of the phagocytes.
Methods And Results: 51 patients (18 males and 33 females) of the average age 36 years with repeating respiratory, mycotic and herpetic infections were investigated. Immunomodulatory treatment included: Decaris (Lavamizolum), Isoprinosine (Methisoprinolum), Imudon (Lysatum bacteriale mixtum), Biostim (Klebsiella pneumoniae), and Immodin (Leukocyti dialysati lyophylysatum). Before and after treatment all patients underwent basic immunological examination IgG, IgA, IgM, C3, C4 complement components, PEG, CD3, CD4, CD8 and CD19). Phagocytotic activity was estimated by means of FAGO MSHP test with HEMA particles and by chemiluminiscence test. Chemiluminiscence was measured using ML 3000 Microtiter Plate Luminometer (Dynex), 26 healthy individuals of the corresponding age were the controls. Results were statistically evaluated by Student's t-test. Significant increase of the cellular metabolic activity was found in Decaris and Immodin treated patients (P < 0.001).
Conclusions: Chemiluminiscence test, which evaluates the metabolic activity of phagocytes, can be used for the accurate laboratory monitoring of the effects of some immunomodulatory drugs on the natural immunity of patients.
Download full-text PDF |
Source |
---|
Alzheimers Dement
December 2024
Nanyang Technological University, Singapore, Singapore.
Background: The mitochondrial translocator protein (TSPO) is a biomarker of inflammation associated with aging and Alzheimer's disease (AD). We have previously shown that TSPO plays a critical role in protective immune responses important in AD. Here we investigated the interaction between TSPO immunomodulatory function and aging in the hippocampus, a region severely affected in AD.
View Article and Find Full Text PDFN Engl J Med
December 2024
From the Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University (J.H., X.L.), and the State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Institute of Hepatology, Nanfang Hospital (J.H.), Guangzhou, the Department of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University (W.Z.), the Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine (Q.X.), Roche Holding (Q.B., E.C.), Roche Research and Development Center (C.C., Y.H.), and Takeda APAC Biopharmaceutical Research and Development (Q.B.), Shanghai, the Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun (R.H.), the Center of Infectious Diseases, Laboratory of Infectious and Liver Disease, Institute of Infectious Diseases, West China Hospital, Sichuan University, Chengdu (H.T.), and the Department of Medicine and State Key Laboratory of Liver Research, Queen Mary Hospital, University of Hong Kong, Hong Kong (M.-F.Y.) - all in China; the Division of Infectious Diseases, University Hospital Álvaro Cunqueiro, Galicia Sur Health Research Institute, Servizo Galego de Saúde-Universidade de Vigo, Vigo, Spain (L.E.M.A.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taichung Veterans General Hospital (S.-S.Y.), and the Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, China Medical University (C.-Y.P.), Taichung, the Department of Internal Medicine, Changhua Christian Hospital, Changhua (W.-W.S.), Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung (W.-L.C.), and National Taiwan University Hospital, Taipei (J.-H.K.) - all in Taiwan; the Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, South Korea (D.J.K.); the HIV Netherlands Australia Thailand Research Collaboration, Thai Red Cross AIDS Research Center and the Center of Excellence in Tuberculosis, Faculty of Medicine, Chulalongkorn University, Bangkok (A.A.), and the Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai (A.L.) - both in Thailand; Université de Paris-Cité, Department of Hepatology, Assistance Publique-Hôpitaux de Paris, Hôpital Beaujon, Centre de Recherche sur l'Inflammation, INSERM Unité Mixte de Recherche 1149, Paris (T.A.); F. Hoffmann-La Roche, Basel, Switzerland (F. Canducci, M.T.C., F. Chughlay, K.G., N.G., P.K., R.K., M.T.); Roche Products, Welwyn Garden City (S.D., V.P., B.S., R.U., C.W.), and ID Pharma Consultancy, Yelverton (C.W.) - both in the United Kingdom; Enthera Pharmaceuticals, Milan (F. Canducci); Parexel International, Hyderabad, India (A.P.); and the New Zealand Liver Transplant Unit, Auckland City Hospital, Auckland, New Zealand (E.G.).
Background: Xalnesiran, a small interfering RNA molecule that targets a conserved region of the hepatitis B virus (HBV) genome and silences multiple HBV transcripts, may have efficacy, with or without an immunomodulator, in patients with chronic HBV infection.
Methods: We conducted a phase 2, multicenter, randomized, controlled, adaptive, open-label platform trial that included the evaluation of 48 weeks of treatment with xalnesiran at a dose of 100 mg (group 1), xalnesiran at a dose of 200 mg (group 2), xalnesiran at a dose of 200 mg plus 150 mg of ruzotolimod (group 3), xalnesiran at a dose of 200 mg plus 180 μg of pegylated interferon alfa-2a (group 4), or a nucleoside or nucleotide analogue (NA) alone (group 5) in participants with chronic HBV infection who had virologic suppression with NA therapy. The primary efficacy end point was hepatitis B surface antigen (HBsAg) loss (HBsAg level, <0.
Vaccines (Basel)
December 2024
College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA.
Multidrug-resistant tuberculosis (MDR-TB) poses a significant global health threat, especially when it involves the central nervous system (CNS). Tuberculous meningitis (TBM), a severe manifestation of TB, is linked to high mortality rates and long-term neurological complications, further exacerbated by drug resistance and immune evasion mechanisms employed by Mycobacterium tuberculosis (Mtb). Although pulmonary TB remains the primary focus of research, MDR-TBM introduces unique challenges in diagnosis, treatment, and patient outcomes.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Medical Department III, Munich University Hospital, 81377 Munich, Germany.
There is a high medical need to develop new strategies for the treatment of patients with acute myeloid leukemia (AML) refractory to conventional therapy. In vitro, the combinations of the blast-modulatory response modifiers GM-CSF + Prostaglandin E1, (summarized as Kit M) have been shown to convert myeloid leukemic blasts into antigen-presenting dendritic cells of leukemic origin (DC) that were able to (re-)activate the innate and adaptive immune system, direct it specifically against leukemic blasts, and induce memory cells. This study aimed to investigate the immune modulatory capacity and antileukemic efficacy of Kit M in vivo.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
3P-Medicine Laboratory, Medical University of Gdańsk, Dębinki Street 7, 80-211 Gdańsk, Poland.
Upper respiratory tract infections (URTIs) are a prevalent health issue, causing considerable morbidity. Despite the availability of conventional treatments, there is an increasing interest in natural products due to their potential antiviral and immunomodulatory benefits. This study aims to evaluate the efficacy of an ELA blend (E-, L-, A-) in preventing and alleviating the symptoms of URTIs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!