A novel algorithm was applied to the sequences of bacteriorhodopsin (BRh), of rhodopsin (Rh), and of the two human anaphylatoxin receptors, C5a-receptor (hC5aR) and C3a-receptor (hC3aR), that predicts their transmembrane domains (TMD) according to energy criteria alone, on the basis of their sequences and a template structure for each. Two consecutive criteria were applied for the predictions: the first is hydrophobicity of a sequence of residues, which determines the candidate stretches of residues that form one of the transmembrane helices. The second criterion is an energy function composed of inter residue contact energies, of hydrophobic contributions due to membrane exposure and of the interactions of a few residues with the phospholipid head groups. The sequence of candidate residues for each helix is longer than that of the template, and is finally determined by threading each of the candidate stretches on each of the template helices and evaluating the energy for all possible configurations. Contact energies between residues were taken from a database (Miyazawa S and Jernigan RL (1996) J Mol Biol 256 623-44). The algorithm predicts well the TMD structure of BRh based on its own template, and the TMD structure of Rh conforms well with the model of Baldwin et al (Baldwin JM Schertler GFX and Unger VM (1997) J Biol Chem 272 144-64). Results for the construction of the TMD of hC5aR and hC3aR were compared, employing the template structure of Rh. Most of the results for these receptors are in accord with alignments and with mutation experiments on hC5aR and hC3aR. The predictions may serve as a basis for future mutagenesis experiments of these receptors.
Download full-text PDF |
Source |
---|
Inorg Chem
January 2025
Jiangxi Province Key Laboratory of Functional Organic Polymer, School of Chemistry and Materials Science, East China University of Technology, Nanchang 330013 Jiangxi, P. R. China.
The platelike nickel-terephthalate-type metal-organic framework nanoarrays (Ni-BDC NAs) on carbon cloth are obtained by employing agaric-like Ni(OH) NAs as sacrificial templates. The microenvironment of Ni-BDC NAs is modulated by various neighboring functional groups (-NH, -NO, and -Br) on the carboxylate ligand, exerting minimal destructive effects on the structure and morphology of Ni-BDC NAs. The electrochemical oxygen evolution reaction (OER) of Ni-BDC-NH NAs, Ni-BDC-NO NAs, and Ni-BDC-Br NAs exhibited a significant enhancement compared to that of Ni-BDC NAs alone, as evidenced by both experimental and theoretical assessments.
View Article and Find Full Text PDFACS Sens
January 2025
Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
It is crucial yet challenging to sensitively quantify low-abundance biomarkers in blood for early screening and diagnosis of various diseases. Herein, an analytical model of intra-mesopore immunoassay (IMIA) was proposed, which was competent to examine various biomarkers at the femtomolar level. The success is rooted in the design of an innovative superparamagnetic core-shell structure with FeO nanoparticles (NPs) at the core and hierarchically porous zeolitic imidazolate frameworks as a shell (FeO@HPZIF-8), achieved through a soft-template directed self-assembly coupled with confinement growth mechanism.
View Article and Find Full Text PDFNanoscale
January 2025
Dept. of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA.
Identifying facile strategies for hierarchically structuring crystalline porous materials is critical for realizing diffusion length scales suitable for broad applications. Here, we elucidate synthesis-structure-function relations governing how room temperature catalytic conditions can be exploited to tune covalent organic framework (COF) growth and thereby access unique hierarchical morphologies without the need to introduce secondary templates or structure directing molecules. Specifically, we demonstrate how scandium triflate, an efficient catalyst involved in the synthesis of imine-based COFs, can be exploited as an effective growth modifier capable of selectively titrating terminal amines on 2D COF layers to facilitate anisotropic crystal growth.
View Article and Find Full Text PDFSemitic languages such as Hebrew and Arabic are known for having a non-concatenative morphology: words are typically built of a combination of a consonantal root, typically tri-consonantal (e.g., k-t-b "related to writing" in Modern Standard Arabic (MSA)), with a prosodic template.
View Article and Find Full Text PDFBiomacromolecules
January 2025
National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China.
Herein, an eco-friendly and degradable poly(lactic acid) aerogel was prepared by combining a poly(ethylene glycol) template material with thermally induced phase separation. Due to the tailored pore size introduced by the template material, the aerogel exhibits high solar reflectance (92.0%), excellent thermal emittance (90.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!