Biodegradability of volatile hydrocarbons of gasoline.

Appl Microbiol Biotechnol

Institut Français du Pétrole, Départment de Microbiologie, Rueil-Malmaison, France.

Published: July 2000

The biodegradability under aerobic conditions of volatile hydrocarbons (4-6 carbons) contained in gasoline and consisting of n-alkanes, iso-alkanes, cycloalkanes and alkenes, was investigated. Activated sludge was used as the reference microflora. The biodegradation test involved the degradation of the volatile fraction of gasoline in closed flasks under optimal conditions. The kinetics of biodegradation was monitored by CO2 production. Final degradation was determined by gas chromatographic analysis of all measurable hydrocarbons (12 compounds) in the mixture after sampling the headspace of the flasks. The degradation of individual hydrocarbons was also studied with the same methodology. When incubated individually, all hydrocarbons used as carbon sources, except 2,2-dimethylbutane and 2,3-dimethylbutane, were completely consumed in 30 days or less with different velocities and initial lag periods. When incubated together as constituents of the light gasoline fraction, all hydrocarbons were metabolised, often with higher velocities than for individual compounds. Cometabolism was involved in the degradation of dimethyl isoalkanes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s002530000354DOI Listing

Publication Analysis

Top Keywords

volatile hydrocarbons
8
involved degradation
8
hydrocarbons
6
biodegradability volatile
4
gasoline
4
hydrocarbons gasoline
4
gasoline biodegradability
4
biodegradability aerobic
4
aerobic conditions
4
conditions volatile
4

Similar Publications

Background: Upland cotton (Gossypium hirsutum) plants constitutively store volatile terpenes in their leaves, which are steadily emitted at low levels. Herbivory leads to a greater release of these stored volatiles. Additionally, damaged plants increase the accumulation of volatile terpenes in their leaves and begin to synthesize and emit other terpenes and additional compounds.

View Article and Find Full Text PDF

The extraction of plant essential oils (EOs) and analysis by gas chromatography coupled to mass spectrometry (GC-MS) are standard methods when studying aromatic plants and the chemical composition of EOs. Here, two simple methods for the extraction of EO compounds from leaves of Thymus vulgaris are described. Organic solvent extraction and solid-phase microextraction (SPME), respectively, are used and the results of the GC-MS analyses are compared.

View Article and Find Full Text PDF

Today, active packaging has become essential to increase food safety and decrease food spoilage. In this study, the aim was to delay spoilage and increase the shelf life of rainbow fish fillets with a new hybrid nanocomposite active packaging. Packaging was fabricated with Ethylene vinyl acetate and active compounds such as rosemary extract, zinc oxide nanoparticles, and modified iron (Fe-MMT).

View Article and Find Full Text PDF

Integration of ratiometric, ultrafast, sensitive detection as well as rapid and efficient removal of tetracycline based on a novel Zn (II) functionalized magnetic covalent organic framework.

Anal Chim Acta

March 2025

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China. Electronic address:

Background: Based on the low volatility and refractory nature of Tetracycline (TC), excessive use leads to its continuous accumulation in water environments, posing serious risks to the ecological environment and human health. Although a very limited number of nanomaterials capable of simultaneously detecting and removing TC have been fabricated, they generally exist issues associated with a single detection signal ("on" or "off") or low adsorption rates with low adsorption capacities. As a result, it is crucial to develop a reliable technique to achieve ratiometric detection as well as rapid and efficient removal of TC.

View Article and Find Full Text PDF

Asphalt pavement emission behavior under solar radiation during in-service period.

J Hazard Mater

January 2025

School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia.

The toxic fume emitted from asphalt pavement remains a health and environmental hazard towards public safety, especially the emission of volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs). Despite extensive studies focused on characterizing asphalt fumes generated during construction stages (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!