One method of fabricating implantable biomaterials is to utilize biologically derived, chemically modified tissues to form constructs that are both biocompatible and remodelable. Rigorous mechanical characterization is a necessary component in material evaluation to ensure that the constructs will withstand in vivo loading. In this study we performed an in-depth biaxial mechanical and quantitative structural analysis of GraftPatch (GP), a biomaterial constructed by assembling chemically treated layers of porcine small intestinal submucosa (SIS). The mechanical behavior of GP was compared to both native SIS and to glutaraldehyde-treated bovine pericardium (GLBP) as a reference biomaterial. Under biaxial loading, GP was found to be stiffer than native SIS and mechanically anisotropic, with the preferred fiber direction demonstrating greater stiffness. Quantitative structural analysis using small-angle light scattering indicated a uniform fiber structure similar to GLBP and SIS. To enable test-protocol-independent quantitative comparisons, the biaxial mechanical data were fit to an orthotropic constitutive model, which indicated a similar degree of mechanical anisotropy between the three groups. We also demonstrate how the constitutive model can be used to design layered biocomposite materials that can undergo large deformations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1097-4636(200011)52:2<365::aid-jbm17>3.0.co;2-3 | DOI Listing |
J Mech Behav Biomed Mater
December 2024
School of Engineering, University of Guelph, Guelph, Ontario, Canada. Electronic address:
As a biarticular muscle, the biceps brachii both supinates the forearm and flexes the elbow and shoulder, thus allowing the upper limb to perform a variety of activities of daily living (ADL). The biceps brachii originates on the coracoid apex as well as the supraglenoid tubercle and inserts on the radial tuberosity. At the distal end, the bicipital aponeurosis (BA) provides a transition of the biceps tendon into the antebrachial fascia.
View Article and Find Full Text PDFNanoscale
January 2025
School of Science, Jiangsu University of Science and Technology, Zhenjiang 212001, China.
Herein, we propose a new GaN/MoSiP van der Waals (vdWs) heterostructure constructed by vertically stacking GaN and MoSiP monolayers. Its electronic, optical, and photocatalytic properties are explored DFT++BSE calculations. The calculated binding energy and phonon spectrum demonstrated the material's high stabilities.
View Article and Find Full Text PDFDent Mater
December 2024
University of São Paulo School of Dentistry, Department of Biomaterials and Oral Biology, Av. Prof. Lineu Prestes, 2227, São Paulo, SP 05508-000, Brazil. Electronic address:
Objectives: This study aimed to verify if composites containing dicalcium phosphate dihydrate particles (DCPD) are able to induce dentin remineralization in vitro. Additionally, the mechanical properties of the materials were tested.
Methods: Four composites with 50 vol% inorganic content and 1 BisGMA: 1 TEGDMA (mols) were prepared, with different DCPD:glass ratios (50:0, 40:10, 30:20 and 0:50).
Biomech Model Mechanobiol
December 2024
Institute for Biomedical Engineering and Nano Science, Shanghai East Hospital, Tongji University School of Medicine, 500 Zhennan Road, Shanghai, 200331, People's Republic of China.
Hypertension and bicuspid aortic valve (BAV) are key clinical factors that may affect local biomechanical properties of ascending thoracic aortic aneurysms (ATAAs). This study sought to investigate regional differences in biaxial mechanical properties of the ATAAs for the hypertensive patients with BAV. Fresh ATAA samples were harvested from 16 hypertensive patients (age, 66 ± 9 years) undergoing elective aortic surgery.
View Article and Find Full Text PDFSmall Struct
November 2024
Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
Taking inspiration from diverse interlocking and adhesion structures found in nature, a biaxially interlocking interface is developed in this work. This interface is formed by interconnecting two electrostatically flocked substrates and its mechanical strength is enhanced through the incorporation of enoki mushroom-shaped microfibers and deposited extracellular matrix (ECM). Tips of flocked straight fibers can be transformed into mushroom shapes through thermal treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!