Download full-text PDF

Source

Publication Analysis

Top Keywords

contact cooling
4
cooling devices
4
devices laser
4
laser treatment
4
treatment spider
4
spider leg
4
leg veins
4
contact
1
devices
1
laser
1

Similar Publications

Daytime radiative cooling, based on selective infrared emissions through atmospheric transparency windows to outer space and the reflection of solar irradiance, is a zero-energy and environmentally friendly cooling technology. Poly(ethylene oxide) (PEO) electrospun membranes have both selective mid-infrared emissions and effective sunlight reflection, inducing excellent daytime radiative cooling performance. However, PEO is highly water soluble, which makes electrospun PEO membranes unable to cope with rainy conditions when used for outdoor daytime radiative cooling.

View Article and Find Full Text PDF

Treating the surfaces of dental implants in an alkaline medium allows us to obtain microstructures of sodium titanate crystals that favor the appearance of apatite in the physiological environment, producing osteoconductive surfaces. In this research, 385 discs made of titanium used in dental implants underwent different NaOH treatments with a 6M concentration at 600 °C and cooling rates of 20, 50, 75, and 115 °C/h. Using high-resolution electron microscopy, the microstructures were observed, and the different crystal sizes were determined and compared with control samples (those without biomimetic treatment).

View Article and Find Full Text PDF

High-pressure and low-temperature structural changes in the ferroelectric phase of (R)-3-quinuclidinol are analysed. The changes in unit-cell volume and parameters are continuous both on cooling and under increasing pressure. The anisotropy of the structural strain, however, is found to be different.

View Article and Find Full Text PDF

Effective heat dissipation remains a grand challenge for energy-dense devices and systems. As heterogeneous integration becomes increasingly inevitable in electronics, thermal resistance at interfaces has emerged as a critical bottleneck for thermal management. However, existing thermal interface solutions are constrained by either high thermal resistance or poor reliability.

View Article and Find Full Text PDF

Thermal Optimization of Edge-Emitting Lasers Arrays.

Materials (Basel)

December 2024

Institute of Physics, Lodz University of Technology, ul. Wólczańska 217/221, 90-003 Łódź, Poland.

This paper presents a novel approach to address the issue of uneven temperature distribution in one-dimensional laser arrays, specifically in gallium nitride edge-emitting lasers emitting green light of 540 nm. The results were obtained using heat flow numerical analysis, which included an optimization method specifically developed for this type of array. It was demonstrated that thermal optimization of a one-dimensional edge-emitting laser array can be achieved by adjusting the placement of the emitters within the array and the size of the top gold contact, without changing the overall dimensions of the device.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!