Endothelial cells (ECs) actively regulate the extravasation of blood constituents. On stimulation by vasoactive agents and thrombin, ECs change their cytoskeletal architecture and small gaps are formed between neighboring cells. These changes partly depend on a rise in [Ca(2+)](i) and activation of the Ca(2+)/calmodulin-dependent myosin light chain kinase. In this study, mechanisms that contribute to the thrombin-enhanced endothelial permeability were further investigated. We provide direct evidence that thrombin induces a rapid and transient activation of RhoA in human umbilical vein ECs. Under the same conditions, the activity of the related protein Rac was not affected. This was accompanied by an increase in myosin light chain phosphorylation, the generation of F-actin stress fibers, and a prolonged increase in endothelial permeability. Inhibition of the RhoA target Rho kinase with the specific inhibitor Y-27632 reduced all of these effects markedly. In the presence of Y-27632, the thrombin-enhanced permeability was additionally reduced by chelation of [Ca(2+)](i) by BAPTA. These data indicate that RhoA/Rho kinase and Ca(2+) represent 2 pathways that act on endothelial permeability. In addition, the protein tyrosine kinase inhibitor genistein reduced thrombin-induced endothelial permeability without affecting activation of RhoA by thrombin. Our data support a model of thrombin-induced endothelial permeability that is regulated by 3 cellular signal transduction pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.res.87.4.335 | DOI Listing |
Curr Hypertens Rep
January 2025
Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
Purpose Of Review: The role of the lymphatic system in clearing extravasated fluids, lipid transport, and immune surveillance is well established, and lymphatic vasculature can provide a vital role in facilitating crosstalk among various organ systems. Lymphatic vessels rely on intrinsic and local factors to absorb and propel lymph from the interstitium back to the systemic circulation. The biological implications of local influences on lymphatic vessels are underscored by the exquisite sensitivity of these vessels to environmental stimuli.
View Article and Find Full Text PDFFluids Barriers CNS
January 2025
Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada.
Background: Iduronate-2-sulfatase (IDS) deficiency (MPS II; Hunter syndrome) is a disorder that exhibits peripheral and CNS pathology. The blood brain barrier (BBB) prevents systemic enzyme replacement therapy (ERT) from alleviating CNS pathology. We aimed to enable brain delivery of systemic ERT by using molecular BBB-Trojans targeting endothelial transcytosis receptors.
View Article and Find Full Text PDFCEN Case Rep
January 2025
Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Yokohama City Seibu Hospital, Yokohama, Japan.
Reports of glomerulonephritis associated with lymphoproliferative disorders are common, but reports of minimal change disease (MCD) accompanying non-Hodgkin's lymphoma are rare. Here, we present a case of a 45-year-old woman diagnosed with primary Waldenström's macroglobulinemia (WM) during MCD treatment. Her kidney biopsy revealed endothelial cell injury in parts of the MCD.
View Article and Find Full Text PDFThromb Haemost
January 2025
Hemostasis and Erythropathology Laboratory, Hematopathology, Pathology Department, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.
Background: V617F-mutated myeloproliferative neoplasms (MPN) exhibit abnormal proliferation of bone marrow progenitors and increased risk of thrombosis, specifically in splanchnic veins (SVT). The contribution of the endothelium to the development of the prothrombotic phenotype was explored.
Material And Methods: Plasma and serum samples from V617F MPN patients with (n=26) or without (n=7) thrombotic debut and different treatments, were obtained (n=33).
Cardiol Rev
January 2025
From the Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX.
The vascular endothelium and its endothelial glycocalyx contribute to the protection of the endothelial cells from exposure to high levels of sodium and help these structures maintain normal function by regulating vascular permeability due to its buffering effect. The endothelial glycocalyx has negative surface charges that bind sodium and limit sodium entry into cells and the interstitial space. High sodium levels can disrupt this barrier and allow the movement of sodium into cells and extravascular fluid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!