Thrombotic dysfibrinogenemia. Fibrinogen "Caracas V" relation between very tight fibrin network and defective clot degradability.

Thromb Res

Laboratorio de Fisiopatología, Instituto Venezolano de Investigaciones Científicas, IVIC, Caracas, Venezuela.

Published: July 2000

Fibrinogen Caracas V is a thrombotic dysfibrinogenemia with an Aalpha 532 Ser-->Cys mutation characterized by a tight fibrin network formed of thin fibers responsible for a less porous clot than a normal one. In the present work, fibrinogen Caracas V is further characterized in order to understand the relationship between the structural defect and thrombophilia. This thrombotic disorder has been attributed to a tight fibrin network responsible for a decreased permeation of flow through the clot, leading to defective thrombus lysis due to a diminished availability of fibrinolytic enzymes to the inner fibrin surface. Correction of clot structure anomaly, by addition of dextran 40 to fibrinogen before clotting, induces an improvement in fibrin degradation that was attributed to an increase in porosity. The pulmonary embolism observed in this family has been related to an hyper rigidity of the clot, an anomaly that is also corrected by dextran. Furthermore, this abnormal fibrinogen binds more albumin than does normal fibrinogen, a phenomenon attributed to the mutation of serine in Aalpha-532 by cysteine. Therefore, this fibrinogen shows a striking similarity to the fibrinogen Dusart, allowing us to confirm that the alphaC-terminal part of fibrinogen plays an important role in fibrin structure, and to conclude that the anomaly of fibrin network observed in fibrinogen Caracas V is responsible for a deficient thrombus lysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0049-3848(00)00235-8DOI Listing

Publication Analysis

Top Keywords

fibrin network
16
tight fibrin
12
fibrinogen caracas
12
fibrinogen
10
thrombotic dysfibrinogenemia
8
thrombus lysis
8
fibrin
7
clot
5
dysfibrinogenemia fibrinogen
4
fibrinogen "caracas
4

Similar Publications

In the present in vitro study, we evaluated the adhesion of an injectable platelet-rich fibrin (i-PRF) to laser-textured zirconia surfaces and their resultant friction behavior against bone tissue. Three types of zirconia surfaces were compared regarding the i-PRF coating effects: 1) grit blasted with 250-μm spherical alumina particles and acid etched with 20% hydrofluoric acid (ZLA), 2) laser textured with a random (RD) surface pattern, or 3) laser textured with a designed pattern based on 16 lines and 8 passages (L16N8). The coefficient of friction (COF) of the specimens was assessed on a reciprocating sliding pin-on-plate tribometer at 1-N normal load, 1 Hz, and a 2-mm stroke length.

View Article and Find Full Text PDF

Unlabelled: Neuroblastoma (NB) is a highly vascularized pediatric tumor arising from undifferentiated neural crest cells early in life, exhibiting both traditional endothelial-cell-driven vasculature and an intriguing alternative vasculature. The alternative vasculature can arise from cancer cells undergoing transdifferentiation into tumor-derived endothelial cells (TEC), a trait associated with drug resistance and tumor relapse. The lack of effective treatments targeting NB vasculature primarily arises from the challenge of establishing predictive in vitro models that faithfully replicate the alternative vasculature phenomenon.

View Article and Find Full Text PDF

Blood clots are complex structures composed of blood cells and proteins held together by the structural framework provided by an insoluble fibrin network. Factor (F)XIII is a protransglutaminase essential for stabilizing the fibrin network. Activated FXIII(a) introduces novel covalent crosslinks within and between fibrin and other plasma and cellular proteins, and thereby promotes fibrin biochemical and mechanical integrity.

View Article and Find Full Text PDF

In Vitro Model of Vascular Remodeling Under Microfluidic Perfusion.

Micromachines (Basel)

December 2024

Department of Mechanical Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan.

We developed a portable microfluidic system that combines spontaneous lumen formation from human umbilical endothelial cells (HUVECs) in fibrin-collagen hydrogels with active perfusion controlled by a braille actuator. Adaptive interstitial flow and feedthrough perfusion switching enabled the successful culture of spontaneously formed naturally branched lumens for more than one month. We obtained many large-area (2 mm × 3 mm) long-term (more than 30 days per run) time-lapse image datasets of the in vitro luminal network using this microfluidic system.

View Article and Find Full Text PDF

Accelerated rehabilitation following facial nerve injury presents unique clinical challenges. This study evaluates the therapeutic effects of concentrated growth factor (CGF) on facial nerve recovery in a rabbit model and on RSC96 Schwann cells. Characterization of the CGF membrane (CGFM) revealed a three-dimensional fibrin network with embedded platelets, and representative growth factors, including TGF-β1, PDGF-BB, IGF-1, bFGF, and VEGF, were detected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!