A microfluidic cartridge to prepare spores for PCR analysis.

Biosens Bioelectron

Cepheid, Sunnyvale, CA 94089, USA.

Published: January 2000

A prototype cartridge system is described that rapidly disrupts Bacillus spores by sonication, adds PCR reagent to the disrupted spores, and dispenses the mixture into a PCR tube. The total time to automatically process the spores in the cartridge and then detect the spore DNA by real-time PCR was 20 min.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0956-5663(99)00060-3DOI Listing

Publication Analysis

Top Keywords

microfluidic cartridge
4
cartridge prepare
4
spores
4
prepare spores
4
pcr
4
spores pcr
4
pcr analysis
4
analysis prototype
4
prototype cartridge
4
cartridge system
4

Similar Publications

Optofluidic paper-based analytical device for discriminative detection of organic substances via digital color coding.

Microsyst Nanoeng

January 2025

Department of Chemical and Biomolecular Engineering, Chonnam National University, 50 Daehak-ro, Yeosu-si, Jeollanam-do, 59626, Republic of Korea.

Developing a portable yet affordable method for the discrimination of chemical substances with good sensitivity and selectivity is essential for on-site visual detection of unknown substances. Herein, we propose an optofluidic paper-based analytical device (PAD) that consists of a macromolecule-driven flow (MDF) gate and photonic crystal (PhC) coding units, enabling portable and scalable detection and discrimination of various organic chemical, mimicking the olfactory system. The MDF gate is designed for precise flow control of liquid analytes, which depends on intermolecular interactions between the polymer at the MDF gate and the liquid analytes.

View Article and Find Full Text PDF

Rapid and accurate molecular diagnostics are crucial for preventing the global spread of emerging infectious diseases. However, the current gold standard for nucleic acid detection, reverse transcription polymerase chain reaction (RT-PCR), relies heavily on traditional magnetic beads or silica membranes for nucleic acid extraction, resulting in several limitations, including time-consuming processes, the need for trained personnel, and complex equipment. Therefore, there is an urgent need for fully integrated nucleic acid detection technologies that are simple to operate, rapid, and highly sensitive to meet unmet clinical needs.

View Article and Find Full Text PDF

Integrating advanced Microfluidic lateral flow systems with a finger-prick blood collection cartridge to create an all-in-one platform for point-of-care diagnostics.

Biosens Bioelectron

March 2025

Laboratory of Advanced Biotechnologies for Health Assessments (Lab-HA), Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3 Canada; Department of Electrical Engineering and Computer Science (EECS), Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada. Electronic address:

Rapid, point-of-care tests are critical for early diagnosis of disease and detection of biological threats. Lateral flow immunoassays (LFIAs) are well-suited for point-of-care testing due to their ease of use and straightforward readout. However, limitations in sensitivity, quantification, and integration into sample-to-result systems indicate the need for further advancements.

View Article and Find Full Text PDF

Accurate detection of pathogenic nucleic acids is crucial for early diagnosis, effective treatment, and containment of infectious diseases. It facilitates the timely identification of pathogens, aids in monitoring disease outbreaks, and helps prevent the spread of infections within healthcare settings and communities. We developed a multi-layered, paper-based microfluidic and miniaturized electrophoresis system for rapid nucleic acid extraction, separation, amplification, and detection, designed for resource-limited settings.

View Article and Find Full Text PDF

A novel nucleic acid extraction system integrating a switching valve-assisted microfluidic cartridge and a constant pressure pump.

Anal Chim Acta

November 2024

Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China. Electronic address:

Background: Nucleic acid extraction (NAE) is essential in molecular diagnostics, genetic engineering, and DNA sequencing. While advances in switching valve-assisted, self-contained microfluidic (SM) cartridges have improved the NAE processes, challenges persist in streamlining workflows, reducing processing times, and enhancing multi-target detection. Achieving these objectives requires precise control of on-chip fluid dynamics and efficient transfer of nucleic acid solutions (NAS) to detection areas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!