Hedgehog signaling in animal development and human disease.

Ernst Schering Res Found Workshop

Department of Cell Biology, University of Alabama at Birmingham 35294-0005, USA.

Published: August 2000

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-662-04264-9_12DOI Listing

Publication Analysis

Top Keywords

hedgehog signaling
4
signaling animal
4
animal development
4
development human
4
human disease
4
hedgehog
1
animal
1
development
1
human
1
disease
1

Similar Publications

Atahualpa is a rural village located in coastal Ecuador, a region that has been inhabited by people as early as 10,000 years ago. The traditional diet of their indigenous inhabitants is rich in oily fish and they have, therefore, served as a model for investigating the beneficial effects of such a diet. However, the genetic background of this population has not been studied.

View Article and Find Full Text PDF

Enhancer-driven Shh signaling promotes glia-to-mesenchyme transition during bone repair.

Bone Res

January 2025

Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China.

Plp1-lineage Schwann cells (SCs) of peripheral nerve play a critical role in vascular remodeling and osteogenic differentiation during the early stage of bone healing, and the abnormal plasticity of SCs would jeopardize the bone regeneration. However, how Plp1-lineage cells respond to injury and initiate the vascularized osteogenesis remains incompletely understood. Here, by employing single-cell transcriptional profiling combined with lineage-specific tracing models, we uncover that Plp1-lineage cells undergoing injury-induced glia-to-MSCs transition contributed to osteogenesis and revascularization in the initial stage of bone injury.

View Article and Find Full Text PDF

A forward genetic screen identifies potassium channel essentiality in SHH medulloblastoma maintenance.

Dev Cell

January 2025

Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada. Electronic address:

Distinguishing tumor maintenance genes from initiation, progression, and passenger genes is critical for developing effective therapies. We employed a functional genomic approach using the Lazy Piggy transposon to identify tumor maintenance genes in vivo and applied this to sonic hedgehog (SHH) medulloblastoma (MB). Combining Lazy Piggy screening in mice and transcriptomic profiling of human MB, we identified the voltage-gated potassium channel KCNB2 as a candidate maintenance driver.

View Article and Find Full Text PDF

Background/objectives: Basal cell skin cancer (BCSC) develops when skin cells proliferate uncontrollably. Sonidegib (SDB) is a therapeutic option for the treatment of BCSC by inhibiting hedgehog signaling. The problems with SDB's low solubility, poor bioavailability, resistance, poor targeting, and first-pass action make it less effective when taken orally.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!