Meiosis reinitiation in starfish oocytes is characterized by Ca(2+) transients in the cytosol and in the nucleus and is accompanied by the disassembly of the nuclear envelope, a process which is likely to be mediated by the cleavage of selected proteins. We have used mass spectrometry analysis (mass profile fingerprinting) on 2D polyacrylamide gels of extracts of oocytes in which meiosis resumption was induced by 1-methyladenine and have identified five proteins that were specifically degraded: alpha-tubulin, lamin B, dynamin, and two kinds of actin. They are all components of the cytoskeleton or associated with it. We then investigated whether calpain, which is activated by the increase in cell Ca(2+), could cleave the same proteins that became degraded under the influence of 1-methyladenine and thus be involved in nuclear membrane breakdown. The investigation was prompted by the finding that microinjection of calpain into the nuclei of prophase arrested oocytes induced meiosis in the absence of 1-methyladenine. Incubation of prophase arrested (disrupted) oocytes with calpain produced a 2D gel protein pattern in which some of the degradation products coincided with those seen in oocytes challenged with 1-methyladenine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/excr.2000.4969 | DOI Listing |
Biomolecules
December 2024
Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan.
In eukaryotes, mRNAs with long poly(A) tails are translationally active, but deadenylation and uridylation of these tails generally cause mRNA degradation. However, the fate of uridylated mRNAs that are not degraded quickly remains obscure. Here, using tail-seq and microinjection of the 3' region of mRNA, we report that some mRNAs in starfish are re-polyadenylated to be translationally active after deadenylation and uridylation.
View Article and Find Full Text PDFRadiat Res
January 2025
Integrated Center for Science and Humanities, Fukushima Medical University, Fukushima, 960-8516, Japan.
Although multiple studies suggest that ionizing radiation can induce bystander effects (radiation-induced bystander effect, RIBE) in cultured cell lines, it is still unclear whether RIBE is evolutionarily conserved in invertebrates. In this study, we investigated the frequency of cell death of unirradiated starfish (Patiria pectinifera) oocytes co-cultured with oocytes irradiated with X rays (0, 2 and 4 Gy). We observed increased frequencies of cell death determined by morphological abnormality and TUNEL-positive cells in unirradiated oocytes co-cultured with oocytes irradiated with 2 Gy or 4 Gy oocytes.
View Article and Find Full Text PDFCells
November 2024
Department of Biochemistry and Molecular Genetics, Midwestern University, Glendale, AZ 85308, USA.
Sci Adv
October 2024
Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA.
P2X receptors are trimeric ion channels activated by adenosine triphosphate (ATP) that contribute to pathophysiological processes ranging from asthma to neuropathic pain and neurodegeneration. A number of small-molecule antagonists have been identified for these important pharmaceutical targets. However, the molecular pharmacology of P2X receptors is poorly understood because of the chemically disparate nature of antagonists and their differential actions on the seven constituent subtypes.
View Article and Find Full Text PDFJ Comp Neurol
January 2024
School of Biological & Behavioural Sciences, Queen Mary University of London, London, UK.
Reproductive processes are regulated by a variety of neuropeptides in vertebrates and invertebrates. In starfish (phylum Echinodermata), relaxin-like gonad-stimulating peptide triggers oocyte maturation and spawning. However, little is known about other neuropeptides as potential regulators of reproduction in starfish.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!