[Severe respiratory form of influenza in the child].

Arch Pediatr

Service d'urgences et de réanimation pédiatrique, hôpital Edouard-Herriot, Lyon, France.

Published: June 2000

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0929-693x(00)80169-4DOI Listing

Publication Analysis

Top Keywords

[severe respiratory
4
respiratory form
4
form influenza
4
influenza child]
4
[severe
1
form
1
influenza
1
child]
1

Similar Publications

To assess respiratory changes after neurally adjusted ventilatory assist (NAVA) initiation in preterm infants with evolving or established bronchopulmonary dysplasia (BPD). Premature infants born less than 32 weeks gestation with evolving or established BPD initiated on invasive or non-invasive (NIV) NAVA were included. Respiratory data: PCO and SpO₂/FiO₂ (S/F) ratio before and at 4, 24, 48 h post-NAVA initiation were collected.

View Article and Find Full Text PDF

Unlabelled: Post-acute sequelae of COVID-19 involves several organs, but its basis remains poorly understood. Some infected cells in mice survive the acute infection and persist for extended periods in the respiratory tract but not in other tissues. Here, we describe two experimental models of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection to assess the effect of viral virulence on previously infected cells.

View Article and Find Full Text PDF

A novel ADP-directed chaperone function facilitates the ATP-driven motor activity of SARS-CoV helicase.

Nucleic Acids Res

January 2025

Single-Molecule and Cell Mechanobiology Laboratory, Daejeon, 34141, South Korea.

Helicase is a nucleic acid motor that catalyses the unwinding of double-stranded (ds) RNA and DNA via ATP hydrolysis. Helicases can act either as a nucleic acid motor that unwinds its ds substrates or as a chaperone that alters the stability of its substrates, but the two activities have not yet been reported to act simultaneously. Here, we used single-molecule techniques to unravel the synergistic coordination of helicase and chaperone activities, and found that the severe acute respiratory syndrome coronavirus helicase (nsp13) is capable of two modes of action: (i) binding of nsp13 in tandem with the fork junction of the substrate mechanically unwinds the substrate by an ATP-driven synchronous power stroke; and (ii) free nsp13, which is not bound to the substrate but complexed with ADP in solution, destabilizes the substrate through collisions between transient binding and unbinding events with unprecedented melting capability.

View Article and Find Full Text PDF

Objective: This study aimed to assess the safety and efficacy of tissue Plasminogen Activator (tPA) in patients with COVID-19-induced severe Acute Respiratory Distress Syndrome (ARDS).

Methods: The intervention group consisted of eligible patients with severe ARDS due to COVID-19 admitted to the Intensive Care Unit (ICU) of a university hospital. We selected the control group from admitted patients treated in the same ICU within the same period.

View Article and Find Full Text PDF

Kawasaki disease (KD) is an acute vasculitis mainly seen in children, with a specific risk for coronary artery involvement. Atypical symptoms can sometimes result in missed diagnoses, delaying necessary treatment and increasing the chances of serious cardiovascular complications. We report a case of a six-month-old previously healthy girl who had not been vaccinated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!