A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In vivo magnetic resonance imaging and relaxometry study of a porous hydrogel implanted in the trapezius muscle of rabbits. | LitMetric

In vivo magnetic resonance imaging and relaxometry study of a porous hydrogel implanted in the trapezius muscle of rabbits.

Tissue Eng

Quebec Biomaterials Institute, Pavillon St-François d'Assise, CHUQ, Québec, and Department of Surgery, Laval University, Ste-FOY, QC, Canada.

Published: June 2000

In vivo magnetic resonance imaging (MRI) and relaxometry were performed to assess noninvasively the tissue reaction and the biological integration of hydrogels made of poly[N-(2-hydroxypropyl) methacrylamide] (PHPMA) after implantation in the trapezius muscle of rabbits. The benefits of incorporating RGD peptide sequences in the polymer backbone were also investigated. The histological status of each implant was probed by the trend of their transversal relaxation times, T(2), while their biocompatibility was evaluated by analyzing the host tissue response through the evolution of the relaxation times of the adjacent muscle tissue. MR results showed the good acceptability of both hydrogels by the host tissue. The transversal relaxation curves of each implant exhibited two distinct phases as a function of implantation time: (1) a monoexponential phase, dominated by the influx of fluids inside the implants; and (2) a biexponential phase related to the infiltration of cells and the granulation tissue formation within the porous structure of each polymer. These MR findings were correlated with the results of conventional histological analyses. The present study demonstrates the effectiveness of MR methods in noninvasively monitoring the biocompatibility and histological status of implanted porous biomaterials.

Download full-text PDF

Source
http://dx.doi.org/10.1089/10763270050044443DOI Listing

Publication Analysis

Top Keywords

vivo magnetic
8
magnetic resonance
8
resonance imaging
8
trapezius muscle
8
muscle rabbits
8
histological status
8
transversal relaxation
8
relaxation times
8
host tissue
8
tissue
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!