Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP38) regulate anterior pituitary cell secretion and proliferation. In the somatolactotrope GH4C1 cell line, these effects are mediated through the type-II-like PACAP receptor (VPAC2) coupled to the cAMP pathway. In this study, the control of the extracellularly responsive kinases (ERKs) by VIP and PACAP38 was investigated in GH4C1 cells. VIP and PACAP38 increased ERK1 and ERK2 phosphorylation and were equipotent stimulators of both kinases. ERK activation was mimicked by cholera toxin, forskolin and 8bromo-cAMP. VIP and PACAP38 activation of ERK2 was blocked by the protein kinase A inhibitor H89, whereas the protein kinase C inhibitor GF109203X, or prior PMA-induced depletion of the protein kinases C, failed to inhibit VIP and PACAP38 activation of ERK2. In contrast, thyrotropin-releasing hormone (TRH) elicited ERK activation by a PKC-dependent process. ERK activation by VIP or PACAP38 and TRH were additive and both sensitive to the MEK inhibitors PD98059 and U0126. In parallel, U0126 reduced prolactin (PRL) mRNA levels induced by VIP. These results demonstrate for the first time that VIP and PACAP38 activate ERK in GH4C1 cells. Cyclic AMP increase is sufficient to elicit ERK activation in these cells and thus likely to represent the transduction pathway underlying VIP- and PACAP38-dependent ERK activation. This mechanism seems to be involved in VIP-induced PRL gene regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000054570DOI Listing

Publication Analysis

Top Keywords

vip pacap38
24
erk activation
20
protein kinase
12
vasoactive intestinal
8
intestinal polypeptide
8
pituitary adenylate
8
adenylate cyclase-activating
8
pituitary cell
8
vip
8
gh4c1 cells
8

Similar Publications

Estrogens impair hypophagia and hypothalamic cell activation induced by vasoactive intestinal peptide, but not by pituitary adenylate cyclase-activating polypeptide.

Peptides

January 2025

Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil; Laboratório de Fisiologia Neuroendócrina e Metabolismo, Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil. Electronic address:

Article Synopsis
  • The study investigated how estradiol affects food intake and receptor expression in postmenopausal rats, particularly looking at the neuropeptides VIP and PACAP in specific hypothalamic areas.
  • Results showed that estradiol reduced the expression of the VPAC2 receptor and disrupted the hypophagic (appetite-reducing) effects of VIP, while PACAP continued to suppress food intake.
  • Additionally, estradiol altered plasma glucose and free fatty acid levels in these rats, suggesting different mechanisms in how VIP and PACAP influence energy homeostasis in the context of estrogen loss.
View Article and Find Full Text PDF
Article Synopsis
  • BDNF plays an important role in brain function and may help with pain and depression; this study tested its effectiveness against migraines using an animal model.
  • Researchers administered two doses of recombinant human BDNF (rhBDNF) to rats with pain induced by NTG injections, measuring pain response and changes in brain-related neuropeptides and cytokine levels.
  • Results showed that rhBDNF significantly reduced migraine-related pain and altered gene expression similarly to the migraine medication sumatriptan, indicating its potential as a non-invasive migraine treatment.
View Article and Find Full Text PDF

Inflammation with expression of interleukin 6 (IL-6) in the central nervous system (CNS) occurs in several neurodegenerative/neuroinflammatory conditions and may cause neurochemical changes to endogenous neuroprotective systems. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) are two neuropeptides with well-established protective and anti-inflammatory properties. Yet, whether PACAP and VIP levels are altered in mice with CNS-restricted, astrocyte-targeted production of IL-6 (GFAP-IL6) remains unknown.

View Article and Find Full Text PDF

Differential Expression of PACAP/VIP Receptors in the Post-Mortem CNS White Matter of Multiple Sclerosis Donors.

Int J Mol Sci

August 2024

Laboratory of Cellular & Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Sydney, NSW 2007, Australia.

Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are two neuroprotective and anti-inflammatory molecules of the central nervous system (CNS). Both bind to three G protein-coupled receptors, namely PAC1, VPAC1 and VPAC2, to elicit their beneficial effects in various CNS diseases, including multiple sclerosis (MS). In this study, we assessed the expression and distribution of PACAP/VIP receptors in the normal-appearing white matter (NAWM) of MS donors with a clinical history of either relapsing-remitting MS (RRMS), primary MS (PPMS), secondary progressive MS (SPMS) or in aged-matched non-MS controls.

View Article and Find Full Text PDF

Class-B1 G-protein-coupled receptors (GPCRs) are an important family of clinically relevant drug targets that remain difficult to investigate via high-throughput screening and in animal models. Here, we engineered PAClight1, a novel genetically encoded sensor based on a class-B1 GPCR (the human PAC1 receptor, hmPAC1R) endowed with high dynamic range (Δ/ = 1100%), excellent ligand selectivity, and rapid activation kinetics ( = 1.15 s).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!