In saponin-skinned muscle fibers from adult rat heart and m. soleus the apparent affinity of the mitochondrial oxidative phosphorylation system for ADP (Km = 200-400 microM) is much lower than in isolated mitochondria (Km = 10-20 microM). This suggests a limited permeability of the outer mitochondrial membrane (OMM) to adenine nucleotides in slow-twitch muscle cells. We have studied the postnatal changes in the affinity of mitochondrial respiration for ADP, in relation to morphological alterations and expression of mitochondrial creatine kinase (mi-CK) in rat heart in vivo. Analysis of respiration of skinned fibers revealed a gradual decrease in the apparent affinity of mitochondria to ADP throughout 6 weeks post partum that indicates the development of mechanism which increasingly limits the access of ADP to mitochondria. The expression of mi-CK started between the 1st and 2nd weeks and reached the adult levels after 6 weeks. This process was associated with increases in creatine-activated respiration and affinity of oxidative phosphorylation to ADP thus reflecting the progressive coupling of mi-CK to adenine nucleotide translocase. Laser confocal microscopy revealed significant changes in rearrangement of mitochondria in cardiac cells: while the mitochondria of variable shape and size appeared to be random-clustered in the cardiomyocytes of 1 day old rat, they formed a fine network between the myofibrils by the age of 3 weeks. These results allow to conclude that in early period of development, i.e. within 2-3 weeks, the diffusion of ADP to mitochondria becomes progressively restricted, that appears to be related to significant structural rearrangements such as formation of the mitochondrial network. Later (after 3 weeks) the control shifts to mi-CK, which by coupling to adenine nucleotide translocase, allows to maximally activate the processes of oxidative phosphorylation despite limited access of ADP through the OMM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1007002323492 | DOI Listing |
Iran J Pharm Res
May 2024
Department of Basic Medical Sciences, College of Medicine, University of Sulaimani, Sulaymaniyah, Republic of Iraq.
Background: species are commonly used as spices, flavorings, and food additives. Members of the genus offer many medicinal benefits but may also pose adverse effects on human health.
Objectives: To prepare a crude leaf extract of and assess its toxicity profile towards healthy rats.
Front Pharmacol
January 2025
Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye.
Aim: The current study aimed to investigate the protective effects of adenosine triphosphate (ATP), metyrosine, and melatonin on possible methylphenidate cardiotoxicity in rats using biochemical and histopathological methods.
Methods: Thirty rats were separated into five groups: healthy (HG), methylphenidate (MP), ATP + methylphenidate (ATMP), metyrosine + methylphenidate (MSMP), and melatonin + methylphenidate (MLMP). ATP (5 mg/kg) was given intraperitoneally once daily, metyrosine (50 mg/kg) orally twice daily, and melatonin (10 mg/kg) orally once daily.
Circulation
January 2025
Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Center, Quebec City, QC, Canada (S.-E.L., Y.G., T.Y., T.S., M.M., C.R., M.S., S.B.-B., A.B., C.T., A.P., R.E.K., S.M., K.Y., F.P., S.P., O.B., S.B.).
Background: Pulmonary arterial hypertension (PAH) is characterized by obliterative vascular remodeling of the small pulmonary arteries (PAs) and progressive increase in pulmonary vascular resistance leading to right ventricular failure. Although several drugs are approved for the treatment of PAH, mortality rates remain high. Accumulating evidence supports a pathological function of integrins in vessel remodeling, which are gaining renewed interest as drug targets.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
Chitosan is generally considered to be a procoagulant effect, which may cause adverse phenomena such as blood clotting when used in small-diameter vascular grafts. However, it also shows good biocompatibility and anti-inflammatory properties, which can facilitate vascular reconstruction. Therefore, it is significant to transition the effect of chitosan from coagulation promotion to antiplatelet while still harnessing its bioactivity.
View Article and Find Full Text PDFJ Sport Health Sci
January 2025
Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China. Electronic address:
Background: Exercise induces molecular changes that involve multiple organs and tissues. Moreover, these changes are modulated by various exercise parameters-such as intensity, frequency, mode, and duration-as well as by clinical features like gender, age, and body mass index (BMI), each eliciting distinct biological effects. To assist exercise researchers in understanding these changes from a comprehensive perspective that includes multiple organs, diverse exercise regimens, and a range of clinical features, we developed Exercise Regulated Genes Database (ExerGeneDB), a database of exercise-regulated differential genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!